我们以Android获取TP报点为例,分析poll过程。poll系统调用功能是检测设备是否有可读等对应事件发生时,调用read系统调用实现对设备的无阻塞访问。现在我们来分析poll的基本调用流程。
首先看应用如何使用poll:
int main(int argc, char* argv[])
{
int res;
int nfs;
int pollres;
int i;
struct input_event event;
struct pollfd *ufds;
int nfds = 0;
int fd;
// 1.打开文件获得poll的文件描述符
fd = open(TP_DEVICE, O_RDONLY);
if (fd < 0) {
printf("open tp device error.\n");
return -1;
}
// 2.设置需要poll的文件描述符,事件
nfds = 1;
ufds = calloc(1, sizeof(ufds[0]));
ufds[0].fd = fd;
ufds[0].events = POLLIN;
// 3.在循环中调用poll
while(1) {
pollres = poll(ufds, nfds, -1);
for(i = 0; i < nfds; i++) {
if(ufds[i].revents & POLLIN) {
// 4.poll到对应事件,做相应操作
res = read(ufds[i].fd, &event, sizeof(event));
if(res < sizeof(event)) {
printf("could not get event.\n");
return -1;
}
}
printf("type:%d, code:%d, value:%d\n", event.type, event.code, event.value);
}
}
}
以上为大致调用过程,用来获取TP等输入设备数据。
struct pollfd定位如下:
struct pollfd {
36 int fd; // poll的文件描述符
37 short events; // poll的事件
38 short revents; // poll时返回的事件
39};
poll系统调用在/kernel/fs/select.c中实现:
int do_sys_poll(struct pollfd __user *ufds, unsigned int nfds,
struct timespec *end_time)
{
struct poll_wqueues table;
int err = -EFAULT, fdcount, len, size;
/* Allocate small arguments on the stack to save memory and be
faster - use long to make sure the buffer is aligned properly
on 64 bit archs to avoid unaligned access */
long stack_pps[POLL_STACK_ALLOC/sizeof(long)];
struct poll_list *const head = (struct poll_list *)stack_pps;
struct poll_list *walk = head;
unsigned long todo = nfds;
if (nfds > rlimit(RLIMIT_NOFILE))
return -EINVAL;
// nfds
len = min_t(unsigned int, nfds, N_STACK_PPS);
// 将ufds依次拷贝到walk中
for (;;) {
walk->next = NULL;
walk->len = len;
if (!len)
break;
if (copy_from_user(walk->entries, ufds + nfds-todo,
sizeof(struct pollfd) * walk->len))
goto out_fds;
todo -= walk->len;
if (!todo)
break;
len = min(todo, POLLFD_PER_PAGE);
size = sizeof(struct poll_list) + sizeof(struct pollfd) * len;
walk = walk->next = kmalloc(size, GFP_KERNEL);
if (!walk) {
err = -ENOMEM;
goto out_fds;
}
}
// 初始化poll_wqueues结构变量
poll_initwait(&table);
fdcount = do_poll(nfds, head, &table, end_time);
poll_freewait(&table);
// 将poll结果的返回事件给到应用
for (walk = head; walk; walk = walk->next) {
struct pollfd *fds = walk->entries;
int j;
for (j = 0; j < walk->len; j++, ufds++)
if (__put_user(fds[j].revents, &ufds->revents))
goto out_fds;
}
err = fdcount;
out_fds:
walk = head->next;
while (walk) {
struct poll_list *pos = walk;
walk = walk->next;
kfree(pos);
}
return err;
}
接下来的poll操作将在do_poll中继续完成。但是我们需要先看下poll_initwait的作用。
struct poll_wqueues {
poll_table pt;
struct poll_table_page *table;
struct task_struct *polling_task;
int triggered;
int error;
int inline_index;
struct poll_table_entry inline_entries[N_INLINE_POLL_ENTRIES];
};
typedef struct poll_table_struct {
poll_queue_proc _qproc;
unsigned long _key;
} poll_table;
typedef void (*poll_queue_proc)(struct file *, wait_queue_head_t *, struct poll_table_struct *);
void poll_initwait(struct poll_wqueues *pwq)
{
init_poll_funcptr(&pwq->pt, __pollwait);
pwq->polling_task = current;
pwq->triggered = 0;
pwq->error = 0;
pwq->table = NULL;
pwq->inline_index = 0;
}
poll_initwait初始化了poll_wqueues变量,包括设置了poll_wqueues->pt->_qproc的这个函数指针为__pollwait函数。
在初始化完成poll_wqueues结构后,就可以看do_poll()函数了。
static int do_poll(unsigned int nfds, struct poll_list *list,
struct poll_wqueues *wait, struct timespec *end_time)
{
poll_table* pt = &wait->pt;
ktime_t expire, *to = NULL;
int timed_out = 0, count = 0;
u64 slack = 0;
unsigned int busy_flag = net_busy_loop_on() ? POLL_BUSY_LOOP : 0;
// 有时一个大循环
for (;;) {
struct poll_list *walk;
bool can_busy_loop = false;
// walk->entries中有poll的所有文件描述符
for (walk = list; walk != NULL; walk = walk->next) {
struct pollfd * pfd, * pfd_end;
pfd = walk->entries;
pfd_end = pfd + walk->len;
// 对每个文件描述符调用do_pollfd操作
for (; pfd != pfd_end; pfd++) {
/*
* Fish for events. If we found one, record it
* and kill poll_table->_qproc, so we don't
* needlessly register any other waiters after
* this. They'll get immediately deregistered
* when we break out and return.
*/
// 如果有poll的事件,如POLLIN,则count++
if (do_pollfd(pfd, pt, &can_busy_loop,
busy_flag)) {
count++;
pt->_qproc = NULL;
/* found something, stop busy polling */
busy_flag = 0;
can_busy_loop = false;
}
}
}
/*
* All waiters have already been registered, so don't provide
* a poll_table->_qproc to them on the next loop iteration.
*/
pt->_qproc = NULL;
if (!count) {
count = wait->error;
if (signal_pending(current))
count = -EINTR;
}
// 循环只有在count > 0或者timed_out=1退出
if (count || timed_out)
break;
if (end_time && !to) {
//超时时间
expire = timespec_to_ktime(*end_time);
to = &expire;
}
// 每poll一次,进入一次休眠,时间为设定的超时时间
if (!poll_schedule_timeout(wait, TASK_INTERRUPTIBLE, to, slack))
timed_out = 1;
}
return count;
}
}
因此,对于应用来看,只有当有符合poll的事件发生或者超时((count || timed_out)),poll系统调用才会返回,期间进程将进入休眠等待下一次调度poll_schedule_timeout。
最后看do_pollfd实现:
static inline unsigned int do_pollfd(struct pollfd *pollfd, poll_table *pwait,
bool *can_busy_poll,
unsigned int busy_flag)
{
unsigned int mask;
int fd;
mask = 0;
fd = pollfd->fd;
if (fd >= 0) {
struct fd f = fdget(fd);
mask = POLLNVAL;
if (f.file) {
mask = DEFAULT_POLLMASK;
//调用驱动程序的poll
if (f.file->f_op->poll) {
pwait->_key = pollfd->events|POLLERR|POLLHUP;
pwait->_key |= busy_flag;
mask = f.file->f_op->poll(f.file, pwait);
if (mask & busy_flag)
*can_busy_poll = true;
}
/* Mask out unneeded events. */
mask &= pollfd->events | POLLERR | POLLHUP;
fdput(f);
}
}
// 设置revents
pollfd->revents = mask;
return mask;
}
对应输入设备TP,f.file->f_op->poll就是调用evdev的ops的poll方法。当只有poll到需要的应用设置的事件时,mask才能大于0,do_poll()才能如此循环。对于evdev.c,poll方法实现为:
&kernel/driver/input/evdev.c
static unsigned int evdev_poll(struct file *file, poll_table *wait)
{
struct evdev_client *client = file->private_data;
struct evdev *evdev = client->evdev;
unsigned int mask;
poll_wait(file, &evdev->wait, wait);
// 设置mask
if (evdev->exist && !client->revoked)
mask = POLLOUT | POLLWRNORM;
else
mask = POLLHUP | POLLERR;
if (client->packet_head != client->tail)
mask |= POLLIN | POLLRDNORM;
return mask;
}
static inline void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p)
{
if (p && p->_qproc && wait_address)
p->_qproc(filp, wait_address, p);
}
poll_wait()将调用poll_table->_qproc函数指针。这个指针在poll_wqueues初始化时被设置为__pollwait函数。
__pollwait函数创建struct poll_table_entry,并将其与当前进程绑定。当有数据时,通过驱动evdev->wait来唤醒当前进程。
poll_wait当前进程添加到wait参数指定的等待列表(poll_table)中,需要注意的是这个函数是不会引起阻塞的。
总结:
- 1.poll对于驱动程序来说,是无阻塞访问的
- 2.poll也会导致自身进行休眠
- 3.当设置的poll事件发生或者超时,poll才会返回
- 4.poll_wait将驱动的wait_queue_head_t加入到poll_wqueues的等待队列,当有数据可使用时,将唤醒poll_wqueues所在进程。