emgucv4学习9---图像滤波

本文详细介绍了图像滤波中的四种常见方法:中值滤波、均值滤波、高斯滤波和双边滤波。中值滤波在消除椒盐噪声方面表现优异;均值滤波适用于线性平滑,但可能使图像模糊;高斯滤波用于消除高斯噪声,保持边缘清晰;双边滤波则在保持边缘的同时进行去噪。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪 声(包括高斯噪声、椒盐、噪声、随机噪声等)进行抑制,是图像预 处理中不可缺少的操作,其处理效果的好坏将直接影响到到后续图 像处理和分析的有效性和可靠性。 对不同的噪声的抑制,需要使用不同的滤波进行处理,这边主要 介绍几种滤波方法

目录

1、中值滤波

2、均值滤波

3、高斯滤波

4、双边滤波

5、完整代码


1、中值滤波

中值滤波法是一种非线性平滑技术。它是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。g(x,y)=med{f(x-k,y-l),(k,l∈W)} ,其中,f(x,y),g(x,y)分别为原始图像和处理后图像。W为二维模板,通常为3*3,5*5区域,也可以是不同的的形状,如线状,圆形,十字形,圆环形等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrs.Gril

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值