ACdream 1213 Matrix Multiplication

Matrix Multiplication

Time Limit: 2000/1000MS (Java/Others)  Memory Limit: 128000/64000KB (Java/Others)
Problem Description
      Let us consider undirected graph G = {V; E} which has N vertices and M edges. Incidence matrix of this graph is N × M matrix A = {a i,j}, such that a i,j is 1 if i-th vertex is one of the ends of j -th edge and 0 in the other case. Your task is to find the sum of all elements of the matrix A TA.
Input
      The first line of the input file contains two integer numbers — N and M (2 ≤ N ≤ 10 000, 1 ≤ M ≤100 000). Then 2*M integer numbers follow, forming M pairs, each pair describes one edge of the graph. All edges are different and there are no loops (i.e. edge ends are distinct).
Output
      Output the only number — the sum requested.
Sample Input
4 4
1 2
1 3
2 3
2 4
Sample Output
18
Source
Andrew Stankevich Contest 1
Manager

题意:给一个无向图,设这个图的关联矩阵为A。然后计算ATA这个矩阵中,所有元素的和。



思路:观察关联矩阵,对于每条边的两个顶点,这条边对结果的贡献是这两个顶点的度,所以只需要扫描每条边,然后加上出现的顶点的度就可以了。

#include <cstring>
#include <cstdio>
typedef long long LL;
const int mx=100010;
int edge[mx][2];
int cnt[mx];

int main() {
    int n,m;
    while(~scanf("%d%d",&n,&m)) {
        memset(cnt,0,sizeof(cnt));
        for(int i=1; i<=m; i++) {
            int u,v;
            scanf("%d%d",&u,&v);
            edge[i][0]=u;
            edge[i][1]=v;
            cnt[u]++;
            cnt[v]++;
        }
        LL ans=0;
        for(int i=1; i<=m; i++) {
            ans+=cnt[edge[i][0]];
            ans+=cnt[edge[i][1]];
        }
        printf("%lld\n",ans);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值