OpenPrompt:An Open-Source Framework for Prompt-learning

这篇博客介绍了如何利用OpenPrompt框架将知识整合到提示语言器中,以增强情感分析等文本分类任务的性能。作者详细展示了如何定义模板、语言器和PromptModel,并分享了通过知识映射优化标签预测的实践案例。

链接:GitHub - thunlp/OpenPrompt: An Open-Source Framework for Prompt-Learning.

Overview

Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre-trained tasks. This library provides a standard, flexible and extensible framework to deploy the prompt-learning pipeline. OpenPrompt supports loading PLMs directly from huggingface transformers. In the future, we will also support PLMs implemented by other libraries. For more resources about prompt-learning, please check our paper list.

Prompt-learning 是将预训练语言模型 (PLM) 应用于下游 NLP 任务的最新范式,它使用文本模板修改输入文本并直接使用 PLM 执行预训练任务。 该库提供了一个标准、灵活和可扩展的框架来部署prompt-learning管道。 OpenPrompt 支持直接从 Huggingface Transformer 加载 PLM。 将来,我们还将支持其他库实现的 PLM。 有关快速学习的更多资源,请查看我们的论文列表。

What Can You Do via OpenPrompt?

intellects:智力 

prompt verbalizer(语言表达器):

sentiment(情绪) verbalizer

entity(实体) verbalizer

knowledge probing(知识探索)

Use the implementations of current prompt-learning approaches.
* We have implemented various of prompting methods, including templating, verbalizing and optimization strategies under a unified standard. You can easily call and understand these methods.
* Design your own prompt-learning work. With the extensibility of OpenPrompt, you can quickly practice your prompt-learning ideas.

使用当前即时学习方法的实现
* 我们在统一标准下实施了多种提示方式,包括模板化、语言化和优化策略。 您可以轻松调用和理解这些方法。
* 设计您自己的prompt-learning作品。 借助 OpenPrompt 的可扩展性,您可以快速练习prompt-learning的想法。

Installation

Using Pip

Our repo is tested on Python 3.6+ and PyTorch 1.8.1+, install OpenPrompt using pip as follows:

pip install openprompt

To play with the latest features, you can also install OpenPrompt from the source.

Using Git

Clone the repository from github:

git clone https://github.com/thunlp/OpenPrompt.git
cd OpenPrompt
pip install -r requirements.txt
python setup.py install

Modify the code

python setup.py develop

Use OpenPrompt

Base Concepts

PromptModel object contains a PLM, a (or multiple) Template and a (or multiple) Verbalizer, where the Template class is defined to wrap the original input with templates, and the Verbalizer class is to construct a projection between labels and target words in the current vocabulary. And a PromptModel object practically participates in training and inference.

PromptModel 对象包含一个 PLM一个(或多个)模板一个(或多个)Verbalizer

其中模板类被定义为用模板包装原始输入
Verbalizer 类用于构建当前词汇表标签目标词之间的映射
PromptModel 对象实际上参与了训练和推理。

Introduction by a Simple Example

With the modularity and flexibility of OpenPrompt, you can easily develop a prompt-learning pipeline.借助 OpenPrompt 的模块化和灵活性,您可以轻松开发prompt-learning管道。

Step 1: Define a task

The first step is to determine the current NLP task, think about what’s your data looks like and what do you want from the data! That is, the essence of this step is to determine the classses and the InputExample of the task. For simplicity, we use Sentiment Analysis as an example. tutorial_task.

第一步是确定当前的NLP任务,想想你的数据是什么样子的,你想从数据中得到什么! 也就是说,这一步的本质是确定任务的类和 InputExample。 为简单起见,我们以情绪分析为例。 教程_任务。

from openprompt.data_utils import InputExample
classes = [ # There are two classes in Sentiment Analysis, one for negative and one for positive
    "negative",
    "positive"
]
dataset = [ # For simplicity, there's only two examples
    # text_a is the input text of the data, some other datasets may have multiple input sentences in one example.
    InputExample(
        guid = 0,
        text_a = "Albert Einstein was one of the greatest intellects of his time.",
    ),
    InputExample(
        guid = 1,
        text_a = "The film was badly made.",
    ),
]

Step 2: Define a Pre-trained Language Models (PLMs) as backbone.将预训练语言模型 (PLM) 定义为主干。(不知道翻译为主干对不对

Choose a PLM to support your task. Different models have different attributes, we encourge you to use OpenPrompt to explore the potential of various PLMs. OpenPrompt is compatible with models on huggingface.


选择一个 PLM 来支持您的任务。 不同的模型具有不同的属性,我们鼓励您使用 OpenPrompt 来探索各种 PLM 的潜力。 OpenPrompt 与 Huggingface 上的模型兼容。

from openprompt.plms import load_plm
plm, tokenizer, model_config, WrapperClass = load_plm("bert", "bert-base-cased")

 

Step 3: Define a Template.定义模板。

Template is a modifier of the original input text, which is also one of the most important modules in prompt-learning.  We have defined text_a in Step 1.

模板是原始输入文本的修饰符,也是提示学习中最重要的模块之一。 我们在第 1 步中定义了 text_a。

from openprompt.prompts import ManualTemplate
promptTemplate = ManualTemplate(
    text = '{"placeholder":"text_a"} It was {"mask"}',
    tokenizer = tokenizer,
)

Step 4: Define a Verbalizer   定义语言器

Verbalizer is another important (but not neccessary) in prompt-learning,which projects the original labels (we have defined them as classes, remember?) to a set of label words. Here is an example that we project the negative class to the word bad, and project the positive class to the words good, wonderful, great.

Verbalizer 是提示学习中另一个重要的(但不是必需的),它将原始标签(我们已经将它们定义为类,记得吗?)投影到一组标签词。 这是一个示例,我们将负面类别投影到单词 bad,并将正面类别投影到单词 good、wonderful、great。

from openprompt.prompts import ManualVerbalizer
promptVerbalizer = ManualVerbalizer(
    classes = classes,
    label_words = {
        "negative": ["bad"],
        "positive": ["good", "wonderful", "great"],
    },
    tokenizer = tokenizer,
)

Step 5: Combine them into a PromptModel  将它们组合成一个 PromptModel

Given the task, now we have a PLM, a Template and a Verbalizer, we combine them into a PromptModel. Note that although the example naively combine the three modules, you can actually define some complicated interactions among them.

鉴于任务,现在我们有一个 PLM、一个模板和一个 Verbalizer,我们将它们组合成一个 PromptModel。 请注意,尽管示例简单地组合了三个模块,但您实际上可以在它们之间定义一些复杂的交互。

from openprompt import PromptForClassification
promptModel = PromptForClassification(
    template = promptTemplate,
    plm = plm,
    verbalizer = promptVerbalizer,
)

Step 6: Define a DataLoader  定义数据加载器

PromptDataLoader is basically a prompt version of pytorch Dataloader, which also includes a Tokenizer, a Template and a TokenizerWrapper.

PromptDataLoader 基本上是 pytorch Dataloader 的提示版本,其中还包括 Tokenizer、Template 和 TokenizerWrapper。


    from openprompt import PromptDataLoader
    data_loader = PromptDataLoader(
        dataset = dataset,
        tokenizer = tokenizer, 
        template = promptTemplate, 
        tokenizer_wrapper_class=WrapperClass,
    )

Step 7: Train and inference  训练和推理

Done! We can conduct training and inference the same as other processes in Pytorch.

完毕! 我们可以像 Pytorch 中的其他过程一样进行训练和推理。

import torch
# making zero-shot inference using pretrained MLM with prompt
promptModel.eval()
with torch.no_grad():
    for batch in data_loader:
        logits = promptModel(batch)
        preds = torch.argmax(logits, dim = -1)
        print(classes[preds])
# predictions would be 1, 0 for classes 'positive', 'negative'

使用带提示的预训练 MLM 进行零样本推理

运行结果:

positive

negtive

There are too many possible combinations powered by OpenPrompt. We are trying our best to test the performance of different methods as soon as possible. The performance will be constantly updated into the Tables. We also encourage the users to find the best hyper-parameters for their own tasks and report the results by making pull request.

OpenPrompt 支持的可能组合太多了。 我们正在尽最大努力尽快测试不同方法的性能。 性能将不断更新到表中。 我们还鼓励用户为自己的任务找到最佳超参数,并通过发出拉取请求来报告结果。

另一篇论文:《Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification》

Table of Contents Introduction Model Summary Model Downloads Evaluation Results Chat Website & API Platform How to Run Locally License Citation Contact 1. Introduction We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. 2. Model Summary Architecture: Innovative Load Balancing Strategy and Training Objective On top of the efficient architecture of DeepSeek-V2, we pioneer an auxiliary-loss-free strategy for load balancing, which minimizes the performance degradation that arises from encouraging load balancing. We investigate a Multi-Token Prediction (MTP) objective and prove it beneficial to model performance. It can also be used for speculative decoding for inference acceleration. Pre-Training: Towards Ultimate Training Efficiency We design an FP8 mixed precision training framework and, for the first time, validate the feasibility and effectiveness of FP8 training on an extremely large-scale model. Through co-design of algorithms, frameworks, and hardware, we overcome the communication bottleneck in cross-node MoE training, nearly achieving full computation-communication overlap. This significantly enhances our training efficiency and reduces the training costs, enabling us to further scale up the model size without additional overhead. At an economical cost of only 2.664M H800 GPU hours, we complete the pre-training of DeepSeek-V3 on 14.8T tokens, producing the currently strongest open-source base model. The subsequent training stages after pre-training require only 0.1M GPU hours. Post-Training: Knowledge Distillation from DeepSeek-R1 We introduce an innovative methodology to distill reasoning capabilities from the long-Chain-of-Thought (CoT) model, specifically from one of the DeepSeek R1 series models, into standard LLMs, particularly DeepSeek-V3. Our pipeline elegantly incorporates the verification and reflection patterns of R1 into DeepSeek-V3 and notably improves its reasoning performance. Meanwhile, we also maintain a control over the output style and length of DeepSeek-V3. 3. Model Downloads Model #Total Params #Activated Params Context Length Download DeepSeek-V3-Base 671B 37B 128K 🤗 Hugging Face DeepSeek-V3 671B 37B 128K 🤗 Hugging Face Note The total size of DeepSeek-V3 models on Hugging Face is 685B, which includes 671B of the Main Model weights and 14B of the Multi-Token Prediction (MTP) Module weights. To ensure optimal performance and flexibility, we have partnered with open-source communities and hardware vendors to provide multiple ways to run the model locally. For step-by-step guidance, check out Section 6: How_to Run_Locally. For developers looking to dive deeper, we recommend exploring README_WEIGHTS.md for details on the Main Model weights and the Multi-Token Prediction (MTP) Modules. Please note that MTP support is currently under active development within the community, and we welcome your contributions and feedback. 4. Evaluation Results Base Model Standard Benchmarks Benchmark (Metric) # Shots DeepSeek-V2 Qwen2.5 72B LLaMA3.1 405B DeepSeek-V3 Architecture - MoE Dense Dense MoE # Activated Params - 21B 72B 405B 37B # Total Params - 236B 72B 405B 671B English Pile-test (BPB) - 0.606 0.638 0.542 0.548 BBH (EM) 3-shot 78.8 79.8 82.9 87.5 MMLU (Acc.) 5-shot 78.4 85.0 84.4 87.1 MMLU-Redux (Acc.) 5-shot 75.6 83.2 81.3 86.2 MMLU-Pro (Acc.) 5-shot 51.4 58.3 52.8 64.4 DROP (F1) 3-shot 80.4 80.6 86.0 89.0 ARC-Easy (Acc.) 25-shot 97.6 98.4 98.4 98.9 ARC-Challenge (Acc.) 25-shot 92.2 94.5 95.3 95.3 HellaSwag (Acc.) 10-shot 87.1 84.8 89.2 88.9 PIQA (Acc.) 0-shot 83.9 82.6 85.9 84.7 WinoGrande (Acc.) 5-shot 86.3 82.3 85.2 84.9 RACE-Middle (Acc.) 5-shot 73.1 68.1 74.2 67.1 RACE-High (Acc.) 5-shot 52.6 50.3 56.8 51.3 TriviaQA (EM) 5-shot 80.0 71.9 82.7 82.9 NaturalQuestions (EM) 5-shot 38.6 33.2 41.5 40.0 AGIEval (Acc.) 0-shot 57.5 75.8 60.6 79.6 Code HumanEval (Pass@1) 0-shot 43.3 53.0 54.9 65.2 MBPP (Pass@1) 3-shot 65.0 72.6 68.4 75.4 LiveCodeBench-Base (Pass@1) 3-shot 11.6 12.9 15.5 19.4 CRUXEval-I (Acc.) 2-shot 52.5 59.1 58.5 67.3 CRUXEval-O (Acc.) 2-shot 49.8 59.9 59.9 69.8 Math GSM8K (EM) 8-shot 81.6 88.3 83.5 89.3 MATH (EM) 4-shot 43.4 54.4 49.0 61.6 MGSM (EM) 8-shot 63.6 76.2 69.9 79.8 CMath (EM) 3-shot 78.7 84.5 77.3 90.7 Chinese CLUEWSC (EM) 5-shot 82.0 82.5 83.0 82.7 C-Eval (Acc.) 5-shot 81.4 89.2 72.5 90.1 CMMLU (Acc.) 5-shot 84.0 89.5 73.7 88.8 CMRC (EM) 1-shot 77.4 75.8 76.0 76.3 C3 (Acc.) 0-shot 77.4 76.7 79.7 78.6 CCPM (Acc.) 0-shot 93.0 88.5 78.6 92.0 Multilingual MMMLU-non-English (Acc.) 5-shot 64.0 74.8 73.8 79.4 Note Best results are shown in bold. Scores with a gap not exceeding 0.3 are considered to be at the same level. DeepSeek-V3 achieves the best performance on most benchmarks, especially on math and code tasks. For more evaluation details, please check our paper. Context Window Evaluation results on the Needle In A Haystack (NIAH) tests. DeepSeek-V3 performs well across all context window lengths up to 128K. Chat Model Standard Benchmarks (Models larger than 67B) Benchmark (Metric) DeepSeek V2-0506 DeepSeek V2.5-0905 Qwen2.5 72B-Inst. Llama3.1 405B-Inst. Claude-3.5-Sonnet-1022 GPT-4o 0513 DeepSeek V3 Architecture MoE MoE Dense Dense - - MoE # Activated Params 21B 21B 72B 405B - - 37B # Total Params 236B 236B 72B 405B - - 671B English MMLU (EM) 78.2 80.6 85.3 88.6 88.3 87.2 88.5 MMLU-Redux (EM) 77.9 80.3 85.6 86.2 88.9 88.0 89.1 MMLU-Pro (EM) 58.5 66.2 71.6 73.3 78.0 72.6 75.9 DROP (3-shot F1) 83.0 87.8 76.7 88.7 88.3 83.7 91.6 IF-Eval (Prompt Strict) 57.7 80.6 84.1 86.0 86.5 84.3 86.1 GPQA-Diamond (Pass@1) 35.3 41.3 49.0 51.1 65.0 49.9 59.1 SimpleQA (Correct) 9.0 10.2 9.1 17.1 28.4 38.2 24.9 FRAMES (Acc.) 66.9 65.4 69.8 70.0 72.5 80.5 73.3 LongBench v2 (Acc.) 31.6 35.4 39.4 36.1 41.0 48.1 48.7 Code HumanEval-Mul (Pass@1) 69.3 77.4 77.3 77.2 81.7 80.5 82.6 LiveCodeBench (Pass@1-COT) 18.8 29.2 31.1 28.4 36.3 33.4 40.5 LiveCodeBench (Pass@1) 20.3 28.4 28.7 30.1 32.8 34.2 37.6 Codeforces (Percentile) 17.5 35.6 24.8 25.3 20.3 23.6 51.6 SWE Verified (Resolved) - 22.6 23.8 24.5 50.8 38.8 42.0 Aider-Edit (Acc.) 60.3 71.6 65.4 63.9 84.2 72.9 79.7 Aider-Polyglot (Acc.) - 18.2 7.6 5.8 45.3 16.0 49.6 Math AIME 2024 (Pass@1) 4.6 16.7 23.3 23.3 16.0 9.3 39.2 MATH-500 (EM) 56.3 74.7 80.0 73.8 78.3 74.6 90.2 CNMO 2024 (Pass@1) 2.8 10.8 15.9 6.8 13.1 10.8 43.2 Chinese CLUEWSC (EM) 89.9 90.4 91.4 84.7 85.4 87.9 90.9 C-Eval (EM) 78.6 79.5 86.1 61.5 76.7 76.0 86.5 C-SimpleQA (Correct) 48.5 54.1 48.4 50.4 51.3 59.3 64.8 Note All models are evaluated in a configuration that limits the output length to 8K. Benchmarks containing fewer than 1000 samples are tested multiple times using varying temperature settings to derive robust final results. DeepSeek-V3 stands as the best-performing open-source model, and also exhibits competitive performance against frontier closed-source models. Open Ended Generation Evaluation Model Arena-Hard AlpacaEval 2.0 DeepSeek-V2.5-0905 76.2 50.5 Qwen2.5-72B-Instruct 81.2 49.1 LLaMA-3.1 405B 69.3 40.5 GPT-4o-0513 80.4 51.1 Claude-Sonnet-3.5-1022 85.2 52.0 DeepSeek-V3 85.5 70.0 Note English open-ended conversation evaluations. For AlpacaEval 2.0, we use the length-controlled win rate as the metric. 5. Chat Website & API Platform You can chat with DeepSeek-V3 on DeepSeek's official website: chat.deepseek.com We also provide OpenAI-Compatible API at DeepSeek Platform: platform.deepseek.com 6. How to Run Locally DeepSeek-V3 can be deployed locally using the following hardware and open-source community software: DeepSeek-Infer Demo: We provide a simple and lightweight demo for FP8 and BF16 inference. SGLang: Fully support the DeepSeek-V3 model in both BF16 and FP8 inference modes, with Multi-Token Prediction coming soon. LMDeploy: Enables efficient FP8 and BF16 inference for local and cloud deployment. TensorRT-LLM: Currently supports BF16 inference and INT4/8 quantization, with FP8 support coming soon. vLLM: Support DeepSeek-V3 model with FP8 and BF16 modes for tensor parallelism and pipeline parallelism. LightLLM: Supports efficient single-node or multi-node deployment for FP8 and BF16. AMD GPU: Enables running the DeepSeek-V3 model on AMD GPUs via SGLang in both BF16 and FP8 modes. Huawei Ascend NPU: Supports running DeepSeek-V3 on Huawei Ascend devices in both INT8 and BF16. Since FP8 training is natively adopted in our framework, we only provide FP8 weights. If you require BF16 weights for experimentation, you can use the provided conversion script to perform the transformation. Here is an example of converting FP8 weights to BF16: cd inference python fp8_cast_bf16.py --input-fp8-hf-path /path/to/fp8_weights --output-bf16-hf-path /path/to/bf16_weights Note Hugging Face's Transformers has not been directly supported yet. 6.1 Inference with DeepSeek-Infer Demo (example only) System Requirements Note Linux with Python 3.10 only. Mac and Windows are not supported. Dependencies: torch==2.4.1 triton==3.0.0 transformers==4.46.3 safetensors==0.4.5 Model Weights & Demo Code Preparation First, clone our DeepSeek-V3 GitHub repository: git clone https://github.com/deepseek-ai/DeepSeek-V3.git Navigate to the inference folder and install dependencies listed in requirements.txt. Easiest way is to use a package manager like conda or uv to create a new virtual environment and install the dependencies. cd DeepSeek-V3/inference pip install -r requirements.txt Download the model weights from Hugging Face, and put them into /path/to/DeepSeek-V3 folder. Model Weights Conversion Convert Hugging Face model weights to a specific format: python convert.py --hf-ckpt-path /path/to/DeepSeek-V3 --save-path /path/to/DeepSeek-V3-Demo --n-experts 256 --model-parallel 16 Run Then you can chat with DeepSeek-V3: torchrun --nnodes 2 --nproc-per-node 8 --node-rank $RANK --master-addr $ADDR generate.py --ckpt-path /path/to/DeepSeek-V3-Demo --config configs/config_671B.json --interactive --temperature 0.7 --max-new-tokens 200 Or batch inference on a given file: torchrun --nnodes 2 --nproc-per-node 8 --node-rank $RANK --master-addr $ADDR generate.py --ckpt-path /path/to/DeepSeek-V3-Demo --config configs/config_671B.json --input-file $FILE 6.2 Inference with SGLang (recommended) SGLang currently supports MLA optimizations, DP Attention, FP8 (W8A8), FP8 KV Cache, and Torch Compile, delivering state-of-the-art latency and throughput performance among open-source frameworks. Notably, SGLang v0.4.1 fully supports running DeepSeek-V3 on both NVIDIA and AMD GPUs, making it a highly versatile and robust solution. SGLang also supports multi-node tensor parallelism, enabling you to run this model on multiple network-connected machines. Multi-Token Prediction (MTP) is in development, and progress can be tracked in the optimization plan. Here are the launch instructions from the SGLang team: https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3 6.3 Inference with LMDeploy (recommended) LMDeploy, a flexible and high-performance inference and serving framework tailored for large language models, now supports DeepSeek-V3. It offers both offline pipeline processing and online deployment capabilities, seamlessly integrating with PyTorch-based workflows. For comprehensive step-by-step instructions on running DeepSeek-V3 with LMDeploy, please refer to here: InternLM/lmdeploy#2960 6.4 Inference with TRT-LLM (recommended) TensorRT-LLM now supports the DeepSeek-V3 model, offering precision options such as BF16 and INT4/INT8 weight-only. Support for FP8 is currently in progress and will be released soon. You can access the custom branch of TRTLLM specifically for DeepSeek-V3 support through the following link to experience the new features directly: https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/deepseek_v3. 6.5 Inference with vLLM (recommended) vLLM v0.6.6 supports DeepSeek-V3 inference for FP8 and BF16 modes on both NVIDIA and AMD GPUs. Aside from standard techniques, vLLM offers pipeline parallelism allowing you to run this model on multiple machines connected by networks. For detailed guidance, please refer to the vLLM instructions. Please feel free to follow the enhancement plan as well. 6.6 Inference with LightLLM (recommended) LightLLM v1.0.1 supports single-machine and multi-machine tensor parallel deployment for DeepSeek-R1 (FP8/BF16) and provides mixed-precision deployment, with more quantization modes continuously integrated. For more details, please refer to LightLLM instructions. Additionally, LightLLM offers PD-disaggregation deployment for DeepSeek-V2, and the implementation of PD-disaggregation for DeepSeek-V3 is in development. 6.7 Recommended Inference Functionality with AMD GPUs In collaboration with the AMD team, we have achieved Day-One support for AMD GPUs using SGLang, with full compatibility for both FP8 and BF16 precision. For detailed guidance, please refer to the SGLang instructions. 6.8 Recommended Inference Functionality with Huawei Ascend NPUs The MindIE framework from the Huawei Ascend community has successfully adapted the BF16 version of DeepSeek-V3. For step-by-step guidance on Ascend NPUs, please follow the instructions here. 7. License This code repository is licensed under the MIT License. The use of DeepSeek-V3 Base/Chat models is subject to the Model License. DeepSeek-V3 series (including Base and Chat) supports commercial use. 8. Citation @misc{deepseekai2024deepseekv3technicalreport, title={DeepSeek-V3 Technical Report}, author={DeepSeek-AI}, year={2024}, eprint={2412.19437}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2412.19437}, } 9. Contact If you have any questions, please raise an issue or contact us at service@deepseek.com.
07-12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值