Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1
/ \
2 2
/ \ / \
3 4 4 3
But the following is not:
1
/ \
2 2
\ \
3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
confused what “{1,#,2,3}” means? > read more on how binary tree is serialized on OJ.
OJ’s Binary Tree Serialization:
The serialization of a binary tree follows a level order traversal, where ‘#’ signifies a path terminator where no node exists below.
Here’s an example:
1
/ \
2 3
/
4
\
5
The above binary tree is serialized as “{1,2,3,#,#,4,#,#,5}”.
思路:递归实现,自顶向下比较。
c++实现:
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool checknode(TreeNode *leftnode,TreeNode *rightnode){
if(leftnode == NULL && rightnode == NULL)
return true;
if(leftnode == NULL || rightnode == NULL)
return false;
return leftnode->val == rightnode->val && checknode(leftnode->left,rightnode->right) && checknode(leftnode->right,rightnode->left);
}
bool isSymmetric(TreeNode *root) {
if(root == NULL)
return true;
return checknode(root->left,root->right);
}
};