题目
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 – the “black hole” of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767, we’ll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
… …
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0, 10000).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation “N - N = 0000”. Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 - 2222 = 0000
思路
同PAT乙级真题 1019 数字黑洞 C++实现,主要是sort、reverse、stoi、to_string等库函数的使用。
柳神用了:s.insert(0, 4 – s.length(), ‘0’);来给不足4位的字符串前面补0,学习了。
代码
#include <iostream>
#include <string>
#include <algorithm>
using namespace std;
int main(){
string s;
cin >> s;
int a, b, c;
do{
while (s.size() < 4){
s += '0';
}
sort(s.begin(), s.end());
b = stoi(s);
reverse(s.begin(), s.end());
a = stoi(s);
c = a - b;
printf("%04d - %04d = %04d\n", a, b, c);
s = to_string(c);
}while (c!=0 && c!=6174);
return 0;
}
该博客详细介绍了PAT甲级编程竞赛中的1069题——数字黑洞(Kaprekar Constant)问题。通过举例说明,解释了从任意4位数出发如何通过特定操作最终得到6174的过程。当输入数字的4个数字相同时,输出"N - N = 0000";否则,逐次展示每次操作得到的差值,直到出现6174。文章重点讨论了C++中sort、reverse、stoi、to_string等库函数的应用,并提及了柳神的一种字符串补零的方法。
880

被折叠的 条评论
为什么被折叠?



