题目
A reversible prime in any number system is a prime whose “reverse” in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (< 105) and D (1 < D <= 10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line “Yes” if N is a reversible prime with radix D, or “No” if not.
Sample Input:
73 10
23 2
23 10
-2
Sample Output:
Yes
Yes
No
思路
将10进制数转为相应进制的数字,顺序保存到vector中,再利用n = n * radix + v[i]求出倒置后的10进制数值,判断其是否是素数即可。
测试点1考察的是:1不是素数。
代码
#include <iostream>
#include <cmath>
#include <vector>
using namespace std;
bool isPrime(int n){
bool ret = true;
if (n==1){
ret = false;
}
for (int i=2; i<=sqrt(n); i++){
if (n%i==0){
ret = false;
break;
}
}
return ret;
}
int main(){
int n, d;
cin >> n;
while (n > 0){
cin >> d;
if (!isPrime(n)){
cout << "No" << endl;
}
else {
vector<int> a(32);
int len = 0;
while (n!=0){
a[len++] = n % d;
n /= d;
}
for (int i=0; i<len; i++){
n = n * d + a[i];
}
if (isPrime(n)){
cout << "Yes" << endl;
}
else {
cout << "No" << endl;
}
}
cin >> n;
}
return 0;
}
本文介绍了一种算法,用于检测一个数在特定进制下是否为可逆素数,即该数及其在该进制下的反转数均为素数。通过将十进制数转换为目标进制,并利用vector保存反转后的数,再判断其是否为素数。
256

被折叠的 条评论
为什么被折叠?



