import tensorflow as tf
import os
from tensorflow.python.tools import freeze_graph
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
import sys
def h5_to_pb(h5_save_path):
model = tf.keras.models.load_model(h5_save_path, compile=False)
model.summary()
full_model = tf.function(lambda Input: model(Input))
full_model = full_model.get_concrete_function(tf.TensorSpec(model.inputs[0].shape, model.inputs[0].dtype))
# Get frozen ConcreteFunction
frozen_func = convert_variables_to_constants_v2(full_model)
frozen_func.graph.as_graph_def()
layers = [op.name for op in frozen_func.graph.get_operations()]
print("-" * 50)
print("Frozen model layers: ")
for layer in layers:
print(layer)
print("-" * 50)
print("Frozen model inputs: ")
print(frozen_func.inputs)
print("Frozen model outputs: ")
print(frozen_func.outputs)
# Save frozen graph from frozen ConcreteFunction
tensorflow2.0 h5 模型转化 pb
于 2022-03-29 12:10:11 首次发布
本文介绍了如何将 TensorFlow 2.0 的 H5 模型转换为 PB 格式,并提供了转换命令。此外,还提及了模型进一步转换为 ONNX 格式的过程,利用 tf2onnx 工具完成这一操作。

最低0.47元/天 解锁文章
3221

被折叠的 条评论
为什么被折叠?



