Collaborate with AI -- Write a modern C++ singleton factory

translate  my blog <<与AI合作 -- 写一个modern c++单例工厂>> to English.

=========================================================================

NOTE: It was written at 2024.01, maybe the AI is not smart as now.

Preface


In this article, readers can learn about a hybrid of the modern C++ singleton pattern and factory pattern. At the same time, you will gain insights into:

  • How intelligent AI has become today,
  • How to leverage AI to quickly turn ideas into reality, and
  • Whether such a level of intelligence might make programmers lose their jobs?

Question
This time, I won't use ChatGPT; instead, I've switched to Bard.

mzhai: Write a Modern c++ program to implement a singleton factory to produce 2 products. Each product has different arguments, the 1st has only one parameter of type int, the 2nd product has two parameters int and string respectively.

 Here, I specifically requested creating two products with different parameters to ensure that the classes generated by AI are versatile.

The answer given by bard

  1 #include <iostream>
  2 #include <memory>
  3 #include <utility>
  4
  5 enum class ProductType {
  6     Product1,
  7     Product2
  8 };
  9
 10 class Product {
 11 public:
 12     virtual ~Product() = default;
 13     virtual void use() = 0;
 14 };
 15
 16 // Concrete products with different arguments
 17 class Product1 : public Product {
 18 public:
 19     Product1(int arg1) : arg1_(arg1) {}
 20     void use() override { std::cout << "Using Product1 with arg1: " << arg1_ << std::endl; }
 21 private:
 22     int arg1_;
 23 };
 24
 25 class Product2 : public Product {
 26 public:
 27     Product2(int arg2_1, std::string arg2_2) : arg2_1_(arg2_1), arg2_2_(arg2_2) {}
 28     void use() override { std::cout << "Using Product2 with arg2_1: " << arg2_1_ << ", arg2_2: " << arg2_2_ << std::endl;     }
 29 private:
 30     int arg2_1_;
 31     std::string arg2_2_;
 32 };
 33
 34 // Singleton factory with modern techniques
 35 class ProductFactory {
 36 public:
 37     static ProductFactory& getInstance() {
 38         static ProductFactory instance;
 39         return instance;
 40     }
 41
 42     template <typename... Args>
 43     std::unique_ptr<Product> createProduct(ProductType type, Args&&... args) {
 44         switch (type) {
 45             case ProductType::Product1:
 46                 return std::make_unique<Product1>(std::forward<Args>(args)...);
 47             case ProductType::Product2:
 48                 return std::make_unique<Product2>(std::forward<Args>(args)...);
 49             default:
 50                 throw std::invalid_argument("Invalid product type");
 51         }
 52     }
 53
 54 private:
 55     ProductFactory() = default; // Private constructor for singleton
 56 };
 57
 58 int main() {
 59     ProductFactory& factory = ProductFactory::getInstance();
 60
 61     std::unique_ptr<Product> product1 = factory.createProduct(ProductType::Product1, 42);
 62     std::unique_ptr<Product> product2 = factory.createProduct(ProductType::Product2, 5, "Hello");
 63
 64     product1->use();
 65     product2->use();
 66
 67     return 0;
 68 }

The problem with AI's answers

It fails with compilation errors, the error message is listed as below:

/usr/bin/../lib/gcc/x86_64-linux-gnu/12/../../../../include/c++/12/bits/unique_ptr.h:1065:34: error: no matching constructor for initialization of 'Product2'
 1065 |     { return unique_ptr<_Tp>(new _Tp(std::forward<_Args>(__args)...)); }
      |                                  ^   ~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/insights/insights.cpp:48:29: note: in instantiation of function template specialization 'std::make_unique<Product2, int>' requested here
   48 |                 return std::make_unique<Product2>(std::forward<Args>(args)...);
      |                             ^

It’s a bit strange, right? On line 62, we clearly passed two parameters to Product2. Doesn’t it only go to case ProductType::Product2 (line 48) when Product2 is involved? However, the compiler complains that only one int was passed to the constructor of Product2. Why?

This is because case statements are runtime code, while createProduct generates two overloads respectively based on lines 61 and 62, each containing all the code of createProduct body. For example, line 61 would generate the following code:

std::unique_ptr<Product> createProduct(ProductType type, int arg) {
    switch (type) {
        case ProductType::Product1:
            return std::make_unique<Product1>(arg);
        case ProductType::Product2:
            return std::make_unique<Product2>(arg);
        default:
            throw std::invalid_argument("Invalid product type");
    }
}

The generated code std::make_unique<Product2>(arg) doesn't match the unique one constructor Product2(int arg2_1, std::string arg2_2) .

Ask Bard to make improvement

Directly pasting the error to Bard, it still failed to truly understand the reason for the compilation error. The reason I say this is the solution it provided was:

case ProductType::Product2:
                if constexpr (sizeof...(Args) == 2) { // Ensure 2 arguments for Product2
                    return std::make_unique<Product2>(std::forward<Args>(args)...);
                } else {
                    throw std::invalid_argument("Invalid arguments for Product2");
                }

constexpr (sizeof...(Args) == 2) does indeed evaluate to TRUE/FALSE at compile time: if the condition is not met, this piece of code will be skipped. As a result, the createProduct function instantiated on line 61 will not produce any error. Let’s try this approach for now, even though it is ugly(which will be discussed later). 

  1 #include <iostream>
  2 #include <memory>
  3 #include <utility>
  4
  5 class Product {
  6 public:
  7     virtual ~Product() = default;
  8     virtual void use() = 0;
  9 };
 10
 11 // Concrete products with different arguments
 12 class Product1 : public Product {
 13 public:
 14     Product1(int arg1) : arg1_(arg1) {}
 15     void use() override { std::cout << "Using Product1 with arg1: " << arg1_ << std::endl; }
 16 private:
 17     int arg1_;
 18 };
 19
 20 class Product2 : public Product {
 21 public:
 22     Product2(int arg2_1, std::string arg2_2) : arg2_1_(arg2_1), arg2_2_(arg2_2) {}
 23     void use() override { std::cout << "Using Product2 with arg2_1: " << arg2_1_ << ", arg2_2: " << arg2_2_ << std::endl;     }
 24 private:
 25     int arg2_1_;
 26     std::string arg2_2_;
 27 };
 28
 29 class ProductFactory {
 30 public:
 31     static ProductFactory& getInstance() {
 32         static ProductFactory instance;
 33         return instance;
 34     }
 35     template <typename... Args>
 36     std::unique_ptr<Product> createProduct(Args&&... args) {
 37         if constexpr (sizeof...(Args) == 1){
 38             return std::make_unique<Product1>(std::forward<Args>(args)...);
 39         }
 40         if constexpr (sizeof...(Args) == 2){
 41             return std::make_unique<Product2>(std::forward<Args>(args)...);
 42         }
 43     }
 44 private:
 45     ProductFactory() = default; // Private constructor for singleton
 46 };
 47
 48 int main() {
 49     ProductFactory& factory = ProductFactory::getInstance();
 50
 51     std::unique_ptr<Product> product1 = factory.createProduct(42);
 52     std::string hi("Hello");
 53     std::unique_ptr<Product> product2 = factory.createProduct(5, hi);
 54
 55     product1->use();
 56     product2->use();
 57
 58     return 0;
 59 }

Compile and run, both no problem. Moreover, let's dig deeply a little bit by cppinsights.io to look at the two instatiated functions:

 Obviously, this approach is not ideal:

  1. Think about it—what if both Product1 and Product2 each had only one parameter? In that case, sizeof would no longer be able to differentiate them.
  2. Moreover, this method generates a lot of redundant code (if constexpr...).

Back to human being

So, let me quickly fix it myself. We can pass an additional template parameter to the createProduct function, for example, called T, like this:

template <typename T, typename... Args>
std::unique_ptr<T> createProduct(Args&&... args) {
    return std::make_unique<T>(std::forward<Args>(args)...);
}

...

std::unique_ptr<Product> product1 = factory.createProduct<Product1>(42);
std::string hi("Hello");
std::unique_ptr<Product> product2 = factory.createProduct<Product2>(5, hi);

Let's look at how createProduct being instantiated.

 Ask Bard how about this improvement? It says:

mzhai:How about changing the code to above?

Bard: I'm happy to review the proposed code changes:

Key Changes:

  • Templated createProduct function: The createProduct function now takes a template parameter T to specify the product type, eliminating the need for the ProductType enum. 
  • Removal of switch statement: The switch statement is no longer needed as the compiler determines the correct type based on the template argument.
  • Explicit product type in main: The createProduct function is called with explicit template arguments (Product1 and Product2) to create the desired product types.

Analysis:

  • Pros:
    • More concise and less verbose code. 
    • Leverages template metaprogramming for type-driven behavior.
    • Potentially easier to extend for new product types.
  • Cons:
    • Might be less readable for those less familiar with templates.
    • Error messages might be more cryptic due to template instantiation.
    • Doesn't enforce a closed set of product types (could potentially create other types).

Overall:

  • The changes are valid and adhere to modern C++ practices.
  • The choice between this approach and the previous one using the ProductType enum is mainly a matter of preference and trade-offs.
  • Consider the team's familiarity with templates and the specific project requirements when deciding on the best approach.

Additional Notes:

  • Ensure that all product classes (Product1Product2, etc.) are derived from the Product base class for this approach to work correctly.
  • Consider using static_assert or concepts (if available in your C++ version) to enforce constraints on the template parameter T, ensuring it's a valid product type.

AI VS Human being

AI is indeed still limited in intelligence, but it can undeniably improve programming efficiency. Tools like Copilot are often advertised as being able to boost human programming efficiency by around 50%. Does this mean that, without new job opportunities being created, half of the engineers will lose their jobs?

Final code

You can copy below code and do expeirments.

#include <iostream>
#include <memory>
#include <utility>

class Product {
public:
    virtual ~Product() = default;
    virtual void use() = 0;
};

// Concrete products with different arguments
class Product1 : public Product {
public:
    Product1(int arg1) : arg1_(arg1) {}
    void use() override { std::cout << "Using Product1 with arg1: " << arg1_ << std::endl; }
private:
    int arg1_;
};

class Product2 : public Product {
public:
    Product2(int arg2_1, std::string arg2_2) : arg2_1_(arg2_1), arg2_2_(arg2_2) {}
    void use() override { std::cout << "Using Product2 with arg2_1: " << arg2_1_ << ", arg2_2: " << arg2_2_ << std::endl; }
private:
    int arg2_1_;
    std::string arg2_2_;
};

class ProductFactory {
public:
    static ProductFactory& getInstance() {
        static ProductFactory instance;
        return instance;
    }

    template <typename T, typename... Args>
    //typename std::enable_if<std::is_same<Product,T>::value, void>::type
    std::unique_ptr<T> createProduct(Args&&... args) {
        return std::make_unique<T>(std::forward<Args>(args)...);
    }

private:
    ProductFactory() = default; // Private constructor for singleton
};

int main() {
    ProductFactory factory;

    std::unique_ptr<Product> product1 = factory.createProduct<Product1>(42);
    std::string hi("Hello");
    std::unique_ptr<Product> product2 = factory.createProduct<Product2>(5, hi);

    product1->use();
    product2->use();

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深山老宅

鸡蛋不错的话,要不要激励下母鸡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值