问题
求解
A∗cos(θ)+B∗sin(θ)=CA *\cos(\theta) + B*\sin(\theta) = CA∗cos(θ)+B∗sin(θ)=C
中的θ\thetaθ值。
方法一
采用三角函数的万能公式进行求解,假设t=tan(θ2)t = \tan(\frac{\theta}{2})t=tan(2θ)
其中
1cos(θ2)2=1+tan(θ2)2\frac{1}{\cos(\frac{\theta}{2})^2} = 1 + \tan(\frac{\theta}{2})^2cos(2θ)21=1+tan(2θ)2
则
cos(θ)=cos(θ2)2−sin(θ2)2=cos(θ2)2(1−sin(θ2)2cos(θ2)2)=11cos(θ2)2(1−tan(θ2)2)=11+tan(θ2)2(1−tan(θ2)2) =1−tan(θ2)21+tan(θ2)2 =1−t21+t2\cos(\theta) = \cos(\frac{\theta}{2})^2 - \sin(\frac{\theta}{2})^2 \\ \qquad\qquad =\cos(\frac{\theta}{2})^2(1 - \frac{\sin(\frac{\theta}{2})^2}{\cos(\frac{\theta}{2})^2}) \\ \qquad \quad =\frac{1}{\frac{1}{\cos(\frac{\theta}{2})^2}}(1 - \tan(\frac{\theta}{2})^2)\\ \qquad \qquad \qquad =\frac{1}{1 + \tan(\frac{\theta}{2})^2}(1 - \tan(\frac{\theta}{2})^2)\\ \!\!=\frac{1 - \tan(\frac{\theta}{2})^2}{1 + \tan(\frac{\theta}{2})^2}\\ \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!=\frac{1 - t^2}{1 + t^2}cos(θ)=cos(2θ)2−sin(2θ)2=cos(2θ)2(1−cos(2θ)2sin(2θ)2)=cos(2θ)211(1−tan(2θ)2)=1+tan(2θ)21(1−tan(2θ)2)=1+tan(2θ)21−tan(2θ)2=1+t21−t2
sin(θ)=2∗sin(θ2)∗cos(θ2)=2∗(sin(θ2)cos(θ2))∗cos(θ2)2=2∗tan(θ2)∗11+tan(θ2)2=2∗tan(θ2)1+tan(θ2)2 =2∗t1+t2\sin(\theta) = 2*\sin(\frac{\theta}{2})*\cos(\frac{\theta}{2}) \\
\qquad\qquad= 2*(\frac{\sin(\frac{\theta}{2})}{\cos(\frac{\theta}{2})})*\cos(\frac{\theta}{2})^2\\
\qquad\qquad\quad= 2*\tan(\frac{\theta}{2})*\frac{1}{1+\tan(\frac{\theta}{2})^2}\\
= \frac{2*\tan(\frac{\theta}{2})}{1+\tan(\frac{\theta}{2})^2}\\
\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!= \frac{2*t}{1 + t^2}
sin(θ)=2∗sin(2θ)∗cos(2θ)=2∗(cos(2θ)sin(2θ))∗cos(2θ)2=2∗tan(2θ)∗1+tan(2θ)21=1+tan(2θ)22∗tan(2θ)=1+t22∗t
则上述方程可以写为
A∗1−t21+t2+B∗2∗t1+t2=CA*\frac{1 - t^2}{1 + t^2} + B*\frac{2*t}{1 + t^2} = CA∗1+t21−t2+B∗1+t22∗t=C
化简得
(A+C)∗t2−2∗B∗t−(A−C)=0(A+C)*t^2-2*B*t-(A-C)=0(A+C)∗t2−2∗B∗t−(A−C)=0
故二次方程的解为
t=B±B2+A2−C2A+Ct = \frac{B\pm\sqrt{B^2 + A^2 - C^2}}{A + C}t=A+CB±B2+A2−C2
所以方程的解为
θ=2∗arctan(t)\theta = 2*\arctan(t)θ=2∗arctan(t)