LBP特征(3)旋转LBP特征

博客参考相关链接,介绍旋转不变LBP特征。指出普通LBP特征有灰度不变性但无旋转不变性,研究人员在此基础上扩展提出旋转不变LBP特征,做法是不断旋转圆形邻域内LBP特征,选特征值最小的作为中心像素点的LBP特征。

参考:https://blog.youkuaiyun.com/quincuntial/article/details/50541815

旋转不变LBP特征

       从(1)和(2)可以看出,上面的LBP特征具有灰度不变性,但还不具备旋转不变性,因此研究人员又在上面的基础上进行了扩展,提出了具有旋转不变性的LBP特征。 
首先不断的旋转圆形邻域内的LBP特征,根据选择得到一系列的LBP特征值,从这些LBP特征值选择LBP特征值最小的作为中心像素点的LBP特征。具体做法如下图所示: 
这里写图片描述

如图,通过对得到的LBP特征进行旋转,得到一系列的LBP特征值,最终将特征值最小的一个特征模式作为中心像素点的LBP特征。

//旋转不变圆形LBP特征计算
template <typename _tp>
void getRotationInvariantLBPFeature(cv::Mat src, cv::Mat &dst, int radius, int neighbors)
{
	//LBP特征图像的行数和列数的计算要准确
	dst = cv::Mat::zeros(src.rows - 2 * radius, src.cols - 2 * radius, CV_8UC1);

	for (int k = 0; k<neighbors; k++)
	{
		//计算采样点对于中心点坐标的偏移量rx,ry
		float rx = static_cast<float>(radius * cos(2.0 * CV_PI * k / neighbors));
		float ry = -static_cast<float>(radius * sin(2.0 * CV_PI * k / neighbors));
		//为双线性插值做准备
		//对采样点偏移量分别进行上下取整
		int x1 = static_cast<int>(floor(rx));
		int x2 = static_cast<int>(ceil(rx));
		int y1 = static_cast<int>(floor(ry));
		int y2 = static_cast<int>(ceil(ry));
		//将坐标偏移量映射到0-1之间
		float tx = rx - x1;
		float ty = ry - y1;
		//根据0-1之间的x,y的权重计算公式计算权重,权重与坐标具体位置无关,与坐标间的差值有关
		float w1 = (1 - tx) * (1 - ty);
		float w2 = tx  * (1 - ty);
		float w3 = (1 - tx) *    ty;
		float w4 = tx  *    ty;
		//循环处理每个像素
		for (int i = radius; i<src.rows - radius; i++)
		{
			for (int j = radius; j<src.cols - radius; j++)
			{
				//获得中心像素点的灰度值
				_tp center = src.at<_tp>(i, j);
				//根据双线性插值公式计算第k个采样点的灰度值
				float neighbor = src.at<_tp>(i + x1, j + y1) * w1 + src.at<_tp>(i + x1, j + y2) *w2 \
					+ src.at<_tp>(i + x2, j + y1) * w3 + src.at<_tp>(i + x2, j + y2) *w4;
				//LBP特征图像的每个邻居的LBP值累加,累加通过与操作完成,对应的LBP值通过移位取得
				dst.at<uchar>(i - radius, j - radius) |= (neighbor>center) << (neighbors - k - 1);//dst默认为CV_8UC1,因此只支持8个采样点
			}
		}
	}
	//进行旋转不变处理
	for (int i = 0; i<dst.rows; i++)
	{
		for (int j = 0; j<dst.cols; j++)
		{
			unsigned char currentValue = dst.at<uchar>(i, j);
			unsigned char minValue = currentValue;
			for (int k = 1; k<neighbors; k++)
			{
				//循环左移
				unsigned char temp = (currentValue >> (neighbors - k)) | (currentValue << k);
				if (temp < minValue)
				{
					minValue = temp;
				}
			}
			dst.at<uchar>(i, j) = minValue;
		}
	}
}

int main()
{
	cv::Mat src = imread("..\\..\\image\\keliamoniz1.jpg", 0);
	cv::Mat dst;

	//getOriginLBPFeature<uchar>(src, dst);

	//getCircularLBPFeatureOptimization<uchar>(src, dst, 1, 8);

	getRotationInvariantLBPFeature<uchar>(src, dst, 1, 8);

	return 0;
}

  

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JoannaJuanCV

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值