import torch as th
import torch.nn as nn
import torch.functional as F
import dgl
import dgl.nn as dglnn
import sklearn.linear_model as lm
import sklearn.metrics as skm
import tqdm
import torch, gc
class SAGE(nn.Module):
def __init__(self, in_feats, n_hidden, n_classes, classes, n_layers, activation, dropout, aggregator_type='gcn'):
super().__init__()
self.init(in_feats, n_hidden, n_classes,classes, n_layers, activation, dropout, aggregator_type)
def init(self, in_feats, n_hidden, n_classes,classes, n_layers, activation, dropout, aggregator_type):
self.n_layers = n_layers
self.n_hidden = n_hidden
self.n_classes = n_classes
self.classes=classes
self.layers = nn.ModuleList()
if n_layers > 1:
self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, aggregator_type))
for i in range(1, n_layers - 1):
self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, aggregator_type))
self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, aggregator_type))
else:
self.layers.append(dglnn.SAGEConv(in_feats, n_classes, aggregator_type))
self.fc=nn.Linear(n_hidden,classes)
self.dropout = nn.Dropout(dropout)
self.activation = activation
def get_e(self):
return self.embedding_x
def get_pre(self):
return self.pre
def forward(self, blocks, x):
h = self.dropout(x)
for l, (layer, block) in enumerate(zip(self.layers, blocks)):
h = layer(block, h)
if l != len(self.layers) - 1:
h = self.activation(h)
h = self.dropout(h)
self.embedding_x=h
self.pre=self.fc(h)
return h
def forward_smc(self, g, x):
h = h = self.dropout(x)
for l, layer in enumerate(self.layers):
h = layer(g, h)
if l != len(self.layers) - 1:
h = self.activation(h)
h = self.dropout(h)
self.embedding_x=h
return h
def inference(self, g, x, device, batch_size, num_workers):
"""
Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
g : the entire graph.
x : the input of entire node set.
The inference code is written in a fashion that it could handle any number of nodes and
layers.
"""
# During inference with sampling, multi-layer blocks are very inefficient because
# lots of computations in the first few layers are repeated.
# Therefore, we compute the representation of all nodes layer by layer. The nodes
# on each layer are of course splitted in batches.
# TODO: can we standardize this?
for l, layer in enumerate(self.layers):
y = th.zeros(g.num_nodes(), self.n_hidden if l != len(self.layers) - 1 else self.n_classes)
sampler = dgl.dataloading.MultiLayerFullNeighborSampler(1)
dataloader = dgl.dataloading.NodeDataLoader(
g,
th.arange(g.num_nodes()).to(g.device),
sampler,
device=device if num_workers == 0 else None,
batch_size=batch_size,
shuffle=False,
drop_last=False,
num_workers=num_workers)
for input_nodes, output_nodes, blocks in dataloader:#tqdm.tqdm(dataloader):
block = blocks[0]
block = block.int().to(device)
h = x[input_nodes].to(device)
h = layer(block, h)
if l != len(self.layers) - 1:
h = self.activation(h)
h = self.dropout(h)
y[output_nodes] = h.cpu()
#gc.collect()
#torch.cuda.empty_cache()
x = y
return y
def compute_acc_unsupervised(emb, labels, train_nids, val_nids, test_nids):
"""
Compute the accuracy of prediction given the labels.
"""
emb = emb.cpu().numpy()
labels = labels.cpu().numpy()
train_nids = train_nids.cpu().numpy()
train_labels = labels[train_nids]
val_nids = val_nids.cpu().numpy()
val_labels = labels[val_nids]
test_nids = test_nids.cpu().numpy()
test_labels = labels[test_nids]
emb = (emb - emb.mean(0, keepdims=True)) / emb.std(0, keepdims=True)
lr = lm.LogisticRegression(multi_class='multinomial', max_iter=10000)
lr.fit(emb[train_nids], train_labels)
pred = lr.predict(emb)
f1_micro_eval = skm.f1_score(val_labels, pred[val_nids], average='micro')
f1_micro_test = skm.f1_score(test_labels, pred[test_nids], average='micro')
return f1_micro_eval, f1_micro_test输出运行结果