HDU 2845 Beans

本文介绍了一种豆子游戏的算法实现,玩家在一个M*N的矩阵中吃豆子,每颗豆子有不同的质量。根据特定的游戏规则,文章详细阐述了如何通过动态规划的方法来计算能够吃到的最大豆子质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 Beans
Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled with different qualities beans. Meantime, there is only one bean in any 1*1 grid. Now you want to eat the beans and collect the qualities, but everyone must obey by the following rules: if you eat the bean at the coordinate(x, y), you can’t eat the beans anyway at the coordinates listed (if exiting): (x, y-1), (x, y+1), and the both rows whose abscissas are x-1 and x+1. 


Now, how much qualities can you eat and then get ?
 

Input

There are a few cases. In each case, there are two integer M (row number) and N (column number). The next M lines each contain N integers, representing the qualities of the beans. We can make sure that the quality of bean isn't beyond 1000, and 1<=M*N<=200000.
 

Output

For each case, you just output the MAX qualities you can eat and then get.
 

Sample Input

         
4 6 11 0 7 5 13 9 78 4 81 6 22 4 1 40 9 34 16 10 11 22 0 33 39 6
 

Sample Output

         
242
 

题意

吃豆子,每个豆子有不同的质量,假如吃了(x,y)位置的豆子,那么就不能吃x-1行和x+1行的豆子,也不能吃(x,y-1)和(x,y+1)位置的豆子。求能吃到的豆子的最大质量。


分析
先找到每一行可以吃到的最大质量,再由每行的最大质量推全部的最大质量。
状态转移方程:
行最大
linedp[i] = max(linedp[j-1],linedp[j-2] + num[i][j])(i为行,j为列)
全体最大
dp[i] = max(dp[i-1],dp[i-2] + linedp[i])


AC代码如下


#include <cstdio>
#include <cstring>
#define maxn 200005
#define max(a,b) a>b?a:b
using namespace std;

int a[maxn],dp[maxn],ldp[maxn];
int m,n;

int main()
{
    while(~scanf("%d%d",&m,&n))
    {
        for(int i = 1 ; i <= m ; i++)
        {
            dp[0] = 0;
            for(int j = 1 ; j <= n; j++)
                scanf("%d",&a[j]);
            dp[1] = a[1];
            for(int j = 2 ; j <= n ; j++)
                dp[j] = max(dp[j-1],dp[j-2] + a[j]);
            ldp[i] = dp[n];
        }
        dp[1] = ldp[1];
        for(int i = 2 ; i <= m ; i++)
            dp[i] = max(dp[i-1],dp[i-2] + ldp[i]);
        printf("%d\n",dp[m]);

    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值