Description
Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled with different qualities beans. Meantime, there is only one bean in any 1*1 grid. Now you want to eat the beans and collect the qualities, but everyone must obey by the following rules: if you eat the bean at the coordinate(x, y), you can’t eat the beans anyway at the coordinates listed (if exiting): (x, y-1), (x, y+1), and the both rows whose abscissas are x-1 and x+1.
Now, how much qualities can you eat and then get ?
Now, how much qualities can you eat and then get ?
Input
There are a few cases. In each case, there are two integer M (row number) and N (column number). The next M lines each contain N integers, representing the qualities of the beans. We can make sure that the quality of bean isn't beyond 1000, and 1<=M*N<=200000.
Output
For each case, you just output the MAX qualities you can eat and then get.
Sample Input
4 6 11 0 7 5 13 9 78 4 81 6 22 4 1 40 9 34 16 10 11 22 0 33 39 6
Sample Output
242
题意
吃豆子,每个豆子有不同的质量,假如吃了(x,y)位置的豆子,那么就不能吃x-1行和x+1行的豆子,也不能吃(x,y-1)和(x,y+1)位置的豆子。求能吃到的豆子的最大质量。
分析
先找到每一行可以吃到的最大质量,再由每行的最大质量推全部的最大质量。
状态转移方程:
行最大
linedp[i] = max(linedp[j-1],linedp[j-2] + num[i][j])(i为行,j为列)
全体最大
dp[i] = max(dp[i-1],dp[i-2] + linedp[i])
AC代码如下
#include <cstdio>
#include <cstring>
#define maxn 200005
#define max(a,b) a>b?a:b
using namespace std;
int a[maxn],dp[maxn],ldp[maxn];
int m,n;
int main()
{
while(~scanf("%d%d",&m,&n))
{
for(int i = 1 ; i <= m ; i++)
{
dp[0] = 0;
for(int j = 1 ; j <= n; j++)
scanf("%d",&a[j]);
dp[1] = a[1];
for(int j = 2 ; j <= n ; j++)
dp[j] = max(dp[j-1],dp[j-2] + a[j]);
ldp[i] = dp[n];
}
dp[1] = ldp[1];
for(int i = 2 ; i <= m ; i++)
dp[i] = max(dp[i-1],dp[i-2] + ldp[i]);
printf("%d\n",dp[m]);
}
return 0;
}