解锁C++核心魔法:一文读懂“类”与“对象”的奇妙世界(第二期)

目录

1 类的默认成员函数

2 构造函数

2.1 函数体内初始化

2.2 初始化列表

3 析构函数

4 拷贝构造函数

5. 赋值运算符重载

5.1 运算符重载

5.2 赋值运算符重载

5.3 日期类演示

6. 取地址运算符重载

6.1 const成员函数

6.2 取地址运算符重载


1 类的默认成员函数

默认成员函数就是用户没有显式实现,编译器会⾃动⽣成的成员函数称为默认成员函数。⼀个类,我们不写的情况下编译器会默认⽣成以下6个默认成员函数,需要注意的是这6个中最重要的是前4个,其次就是C++11以后还会增加两个默认成员函数,移动构造和移动赋值,这里暂时不展开讲。

对于类的默认成员函数,我们需要掌握以下两点:

• 我们不写时,编译器默认⽣成的函数⾏为是什么,是否满⾜我们的需求。

• 编译器默认⽣成的函数不满⾜我们的需求,我们需要⾃⼰实现,那么如何⾃⼰实现?

2 构造函数

2.1 函数体内初始化

构造函数是特殊的成员函数,需要注意的是,构造函数虽然名称叫构造,但是构造函数的主要任务并不是开空间创建对象(我们常使⽤的局部对象是栈帧创建时,空间就开好了),⽽是对象实例化时初始化对象。有了构造函数,我们就不用单独在类内定义Init函数了,而且构造函数会在对象实例化时自动调用。

构造函数的特点:

1. 函数名与类名相同。

2. ⽆返回值。 (返回值啥都不需要给,也不需要写void)

3. 对象实例化时系统会⾃动调⽤对应的构造函数。

4. 构造函数可以重载。

5. 如果类中没有显式定义构造函数,则C++编译器会⾃动⽣成⼀个⽆参的默认构造函数,⼀旦⽤⼾显式定义编译器将不再⽣成。

6. ⽆参构造函数、全缺省构造函数、我们不写构造时编译器默认⽣成的构造函数,都叫做默认构造函数。但是这三个函数有且只有⼀个存在,不能同时存在。⽆参构造函数和全缺省构造函数虽然构成函数重载,但是调⽤时会存在歧义。要注意很多同学会认为默认构造函数是编译器默认⽣成那个叫默认构造,实际上⽆参构造函数、全缺省构造函数也是默认构造,总结⼀下就是不传实参就可以调⽤的构造就叫默认构造。

7. 我们不写,编译器默认⽣成的构造,对内置类型成员变量的初始化没有要求,也就是说是是否初始化是不确定的,看编译器。对于⾃定义类型成员变量,要求调⽤这个成员变量的默认构造函数初始化。如果这个成员变量,没有默认构造函数,那么就会报错,我们要初始化这个成员变量,需要⽤初始化列表才能解决。

class Date
{
public:
	// 1.⽆参构造函数
	Date()
	{
		_year = 1;
		_month = 1;
		_day = 1;
	} // 2.带参构造函数
	Date(int year, int month, int day)
	{
		_year = year;
		_month = month;
		_day = day;
	}
	// 3.全缺省构造函数
	/*Date(int year = 1, int month = 1, int day = 1)
	{
	_year = year;
	_month = month;
	_day = day;
	}*/
	void Print()
	{
		cout << _year << "/" << _month << "/" << _day << endl;
	}
private:
	int _year;
	int _month;
	int _day;
};
int main() {
	

		Date d1; // 调⽤默认构造函数
		Date d2(2025, 1, 1); // 调⽤带参的构造函数
		Date d3();//这是一个函数申明,不是实例化对象
//注意:如果通过⽆参构造函数创建对象时,对象后⾯不⽤跟括号,否则编译器⽆法
//区分这⾥是函数声明还是实例化对象
		d1.Print();
		d2.Print();

		return 0;

}

2.2 初始化列表

初始化列表的特点:

• 之前我们实现构造函数时,初始化成员变量主要使⽤函数体内赋值,构造函数初始化还有⼀种⽅式,就是初始化列表,初始化列表的使⽤⽅式是以⼀个冒号开始,接着是⼀个以逗号分隔的数据成员列表,每个"成员变量"后⾯跟⼀个放在括号中的初始值或表达式。

• 每个成员变量在初始化列表中只能出现⼀次,语法理解上初始化列表可以认为是每个成员变量定义初始化的地⽅。

• 引⽤成员变量,const成员变量,没有默认构造的类类型变量,必须放在初始化列表位置进⾏初始化,否则会编译报错。

• C++11⽀持在成员变量声明的位置给缺省值(这个缺省值还可以是表达式),这个缺省值主要是给没有显⽰在初始化列表初始化的成员使⽤的。

• 尽量使⽤初始化列表初始化,因为那些你不在初始化列表初始化的成员也会⾛初始化列表,如果这个成员在声明位置给了缺省值,初始化列表会⽤这个缺省值初始化。如果你没有给缺省值,对于没有显⽰在初始化列表初始化的内置类型成员是否初始化取决于编译器,C++并没有规定。对于没有显⽰在初始化列表初始化的⾃定义类型成员会调⽤这个成员类型的默认构造函数,如果没有默认构造会编译错误。

• 初始化列表中按照成员变量在类中声明顺序进⾏初始化,跟成员在初始化列表出现的的先后顺序⽆关。建议声明顺序和初始化列表顺序保持⼀致。

初始化列表总结:

⽆论是否显⽰写初始化列表,每个构造函数都有初始化列表;

⽆论是否在初始化列表显⽰初始化成员变量,每个成员变量都要⾛初始化列表初始化;

class Date
{
public:
	Date(int& x, int year = 1, int month = 1, int day = 1)
		: _year(year)
		, _month(month)
		, _day(day)
		, _t(12)
		, _ref(x)
		, _n(1)
	{}
	void Print() const
	{
		cout << _year << "-" << _month << "-" << _day << endl;
	}
private:
	int _year;
	int _month;
	int _day;
	Time _t; // 没有默认构造
	int& _ref; // 引⽤
	const int _n; // const
};

3 析构函数

析构函数与构造函数功能相反,析构函数不是完成对对象本⾝的销毁,⽐如局部对象是存在栈帧的,函数结束栈帧销毁,他就释放了,不需要我们管,C++规定对象在销毁时会⾃动调⽤析构函数,完成对象中资源的清理释放⼯作。比如我们在类的实例化里用new开辟了一块空间,就要在析构里调用delete,⽽像Date没有资源需要释放,所以严格说Date是不需要析构函数的。

析构函数的特点:

1. 析构函数名是在类名前加上字符 ~。

2. ⽆参数⽆返回值。 (这⾥跟构造类似,也不需要加void)

3. ⼀个类只能有⼀个析构函数。若未显式定义,系统会⾃动⽣成默认的析构函数。

4. 对象⽣命周期结束时,系统会⾃动调⽤析构函数。

5. 跟构造函数类似,我们不写编译器⾃动⽣成的析构函数对内置类型成员不做处理,⾃定类型成员会调⽤他的析构函数。

6. 还需要注意的是我们显⽰写析构函数,对于⾃定义类型成员也会调⽤他的析构,也就是说⾃定义类型成员⽆论什么情况都会⾃动调⽤析构函数。

7. 如果类中没有申请资源时,析构函数可以不写,直接使⽤编译器⽣成的默认析构函数,如Date,但是有资源申请时,⼀定要⾃⼰写析构,否则会造成资源泄漏,如Stack。

8. ⼀个局部域的多个对象,C++规定后定义的先析构。

typedef int STDataType;
class Stack
{
public:
	Stack(int n = 4)
	{
		_a = (STDataType*)malloc(sizeof(STDataType) * n);
		if (nullptr == _a)
		{
			perror("malloc申请空间失败");
			return;
		} _
			capacity = n;
		_top = 0;
	}
	~Stack()
	{
		cout << "~Stack()" << endl;
		free(_a);
		_a = nullptr;
		_top = _capacity = 0;
	}
private:
	STDataType* _a;
	size_t _capacity;
	size_t _top;
};

4 拷贝构造函数

如果⼀个构造函数的第⼀个参数是⾃⾝类类型的引⽤,且任何额外的参数都有默认值,则此构造函数也叫做拷⻉构造函数,也就是说拷⻉构造是⼀个特殊的构造函数。

拷⻉构造的特点:

1. 拷⻉构造函数是构造函数的⼀个重载。

2. 拷⻉构造函数的第⼀个参数必须是类类型对象的引⽤,使⽤传值⽅式编译器直接报错,因为语法逻辑上会引发⽆穷递归调⽤。 拷⻉构造函数也可以多个参数,但是第⼀个参数必须是类类型对象的引⽤,后⾯的参数必须有缺省值。

3. C++规定⾃定义类型对象进⾏拷⻉⾏为必须调⽤拷⻉构造,所以这⾥⾃定义类型传值传参和传值返回都会调⽤拷⻉构造完成。

4. 若未显式定义拷⻉构造,编译器会⽣成⾃动⽣成拷⻉构造函数。⾃动⽣成的拷⻉构造对内置类型成员变量会完成值拷⻉/浅拷⻉(⼀个字节⼀个字节的拷⻉),对⾃定义类型成员变量会调⽤他的拷⻉构造。

5. 像Date这样的类成员变量全是内置类型且没有指向什么资源,编译器⾃动⽣成的拷⻉构造就可以完成需要的拷⻉,所以不需要我们显⽰实现拷⻉构造。像Stack这样的类,虽然也都是内置类型,但是_a指向了资源,编译器⾃动⽣成的拷⻉构造完成的值拷⻉/浅拷⻉不符合我们的需求,所以需要我们⾃⼰实现深拷⻉(对指向的资源也进⾏拷⻉)。这⾥还有⼀个⼩技巧,如果⼀个类显⽰实现了析构并释放资源,那么他就需要显⽰写拷⻉构造,否则就不需要。

6. 传值返回会产⽣⼀个临时对象调⽤拷⻉构造,传值引⽤返回,返回的是返回对象的别名(引⽤),没有产⽣拷⻉。但是如果返回对象是⼀个当前函数局部域的局部对象,函数结束就销毁了,那么使⽤引⽤返回是有问题的,这时的引⽤相当于⼀个野引⽤,类似⼀个野指针⼀样。传引⽤返回可以减少拷⻉,但是⼀定要确保返回对象,在当前函数结束后还在,才能⽤引⽤返回。

typedef int STDataType;
class Stack
{
public:
	Stack(int n = 4)
	{
		_a = (STDataType*)malloc(sizeof(STDataType) * n);
		if (nullptr == _a)
		{
			perror("malloc申请空间失败");
			return;
		} _
			capacity = n;
		_top = 0;
	}

	Stack(const Stack& st)
	{
		// 需要对_a指向资源创建同样⼤的资源再拷⻉值

	_a = (STDataType*)malloc(sizeof(STDataType) * st._capacity);
	if (nullptr == _a)
	{
		perror("malloc申请空间失败!!!");
		return;
	}
	memcpy(_a, st._a, sizeof(STDataType) * st._top);
	_top = st._top;
	_capacity = st._capacity;
}


	~Stack()
	{
		cout << "~Stack()" << endl;
		free(_a);
		_a = nullptr;
		_top = _capacity = 0;
	}
private:
	STDataType* _a;
	size_t _capacity;
	size_t _top;
};

5. 赋值运算符重载

5.1 运算符重载

运算符重载特点:

• 当运算符被⽤于类类型的对象时,C++语⾔允许我们通过运算符重载的形式指定新的含义。C++规定类类型对象使⽤运算符时,必须转换成调⽤对应运算符重载,若没有对应的运算符重载,则会编译报错。

• 运算符重载是具有特殊名字的函数,他的名字是由operator和后⾯要定义的运算符共同构成。和其他函数⼀样,它也具有其返回类型和参数列表以及函数体。

• 重载运算符函数的参数个数和该运算符作⽤的运算对象数量⼀样多。⼀元运算符有⼀个参数,⼆元运算符有两个参数,⼆元运算符的左侧运算对象传给第⼀个参数,右侧运算对象传给第⼆个参数。

• 如果⼀个重载运算符函数是成员函数,则它的第⼀个运算对象默认传给隐式的this指针,因此运算符重载作为成员函数时,参数⽐运算对象少⼀个。

• 运算符重载以后,其优先级和结合性与对应的内置类型运算符保持⼀致。

• 不能通过连接语法中没有的符号来创建新的操作符:⽐如operator@。

•       .*      ::      sizeof      ?:     .      注意以上5个运算符不能重载。

• 重载操作符⾄少有⼀个类类型参数,不能通过运算符重载改变内置类型对象的含义,如: intoperator+(int x, int y)

• ⼀个类需要重载哪些运算符,是看哪些运算符重载后有意义,⽐如Date类重载operator-就有意义,但是重载operator+就没有意义。

• 重载++运算符时,有前置++和后置++,运算符重载函数名都是operator++,⽆法很好的区分。C++规定,后置++重载时,增加⼀个int形参,跟前置++构成函数重载,⽅便区分。

• 重载<<和>>时,需要重载为全局函数,因为重载为成员函数,this指针默认抢占了第⼀个形参位置,第⼀个形参位置是左侧运算对象,调⽤时就变成了 对象<<cout,不符合使⽤习惯和可读性。重载为全局函数把ostream/istream放到第⼀个形参位置就可以了,第⼆个形参位置当类类型对象。

5.2 赋值运算符重载

赋值运算符重载是⼀个默认成员函数,⽤于完成两个已经存在的对象直接的拷⻉赋值,这⾥要注意跟拷⻉构造区分,拷⻉构造⽤于⼀个对象拷⻉初始化给另⼀个要创建的对象。

赋值运算符重载的特点:

1. 赋值运算符重载是⼀个运算符重载,规定必须重载为成员函数。赋值运算重载的参数建议写成const 当前类类型引⽤,否则会传值传参会有拷⻉

2. 有返回值,且建议写成当前类类型引⽤,引⽤返回可以提⾼效率,有返回值⽬的是为了⽀持连续赋值场景。

3. 没有显式实现时,编译器会⾃动⽣成⼀个默认赋值运算符重载,默认赋值运算符重载⾏为跟默认拷⻉构造函数类似,对内置类型成员变量会完成值拷⻉/浅拷⻉(⼀个字节⼀个字节的拷⻉),对⾃定义类型成员变量会调⽤他的赋值重载函数。

4. 像Date这样的类成员变量全是内置类型且没有指向什么资源,编译器⾃动⽣成的赋值运算符重载就可以完成需要的拷⻉,所以不需要我们显⽰实现赋值运算符重载。像Stack这样的类,虽然也都是内置类型,但是_a指向了资源,编译器⾃动⽣成的赋值运算符重载完成的值拷⻉/浅拷⻉不符合我们的需求,所以需要我们⾃⼰实现深拷⻉(对指向的资源也进⾏拷⻉)。像MyQueue这样的类型内部主要是⾃定义类型Stack成员,编译器⾃动⽣成的赋值运算符重载会调⽤Stack的赋值运算符重载,也不需要我们显⽰实现MyQueue的赋值运算符重载。这⾥还有⼀个⼩技巧,如果⼀个类显⽰实现了析构并释放资源,那么他就需要显⽰写赋值运算符重载,否则就不需要。

5.3 日期类演示

date.h:

#pragma once
#include<iostream>
using namespace std;
class Date
{
	friend ostream& operator<<(ostream& out,const Date& d);
	friend istream& operator>>(istream& in, Date& d);
public:
	//Date* operator&()
	//{
	//	return this;
	//	// return nullptr;
	//}
	//const Date* operator&()const
	//{
	//	return this;
	//	// return nullptr;
	//}
	// 获取某年某月的天数
	int GetMonthDay(int year, int month) {
		static int months[13] = { -1,31,28,31,30,31,30,31,31,30,31,30,31 };
		if (month == 2 && ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)) {
			return 29;
		}
		else return months[month];
	}
	bool CheckDday() {
		if (_month > 12 || _month<1 || _day>GetMonthDay(_year, _month) || _day < 1) {
			return false;
		}
		return true;
	}
	void Print() {
		cout << _year << "/" << _month << "/" << _day << endl;
	}
	// 全缺省的构造函数
	Date(int year = 1900, int month = 1, int day = 1) {
		_year = year;
		_month = month;
		_day = day;
		if (!CheckDday()) {
			cout << "非法日期:";
			Print();
		}
	}
	// 拷贝构造函数
  // d2(d1)
	Date(const Date& d) {
		_year = d._year;
		_month = d._month;
		_day =d._day;
	}

	// 赋值运算符重载
  // d2 = d3 -> d2.operator=(&d2, d3)

	Date& operator=(const Date& d);
	// 析构函数

	//~Date();

	// 日期+=天数
	Date& operator+=(int day);

	// 日期+天数

	Date operator+(int day);
	// 日期-天数

	Date operator-(int day);
	// 日期-=天数

	Date& operator-=(int day);
	// 前置++

	Date& operator++();
	// 后置++

	Date operator++(int);
	// 后置--

	Date operator--(int);
	// 前置--

	Date& operator--();
	// >运算符重载

	bool operator>(const Date& d);
	// ==运算符重载

	bool operator==(const Date& d);
	// >=运算符重载
	bool operator >= (const Date& d);
	// <运算符重载
	bool operator < (const Date& d);
	// <=运算符重载
	bool operator <= (const Date& d);
	// !=运算符重载
	bool operator != (const Date& d);
	// 日期-日期 返回天数
	int operator-(const Date& d);
private:
	int _year;
	int _month;
	int _day;
};

date.cpp

#define _CRT_SECURE_NO_WARNINGS
#include"date.h"
// 赋值运算符重载
// d2 = d3 -> d2.operator=(&d2, d3)

Date& Date::operator=(const Date& d) {
	_year = d._year;
	_month = d._month;
	_day = d._day;
	return *this;
}
// 析构函数

// 日期+=天数
Date& Date::operator+=(int day) {
	_day += day;
	while (_day>GetMonthDay(_year, _month)) {
		_day -= GetMonthDay(_year, _month);
		_month++;
		if (_month == 13) {
			_year++;
			_month = 1;
		}
	}
	return *this;
}

// 日期+天数

Date Date::operator+(int day) {
	Date tmp = *this;
	tmp += day;
	return tmp;
}

// 日期-=天数

Date& Date::operator-=(int day) {
	_day -= day;
	while (_day < 1) {
		_month--;
		if (_month == 0) {
			_year--;
			_month = 12;
		}
		_day += GetMonthDay(_year, _month);
	}
	return *this;
}
// 日期-天数

Date Date::operator-(int day) {
	Date tmp = *this;
	tmp -= day;
	return tmp;
}

// 前置++

Date& Date::operator++() {
	*this += 1;
	return *this;
}
// 后置++

Date Date::operator++(int) {
	Date tmp = *this;
	*this += 1;
	return tmp;
}
// 后置--

Date Date::operator--(int) {
	Date tmp = *this;
	*this -= 1;
	return tmp;

}
// 前置--

Date& Date::operator--() {
	*this -= 1;
	return *this;
}
// >运算符重载

bool Date::operator>(const Date& d) {
	if (_year > d._year) {
		return true;
	}
	else if(_year==d._year){
		if (_month > d._month) {
			return true;
		}
		else if(_month==d._month)
		{
			if (_day > d._day) return true;
		}
	}
	return false;
}
// ==运算符重载

bool Date::operator==(const Date& d) {
	return _year == d._year &&
		_month == d._month &&
		_day == d._day;
}
// >=运算符重载
bool Date::operator >= (const Date& d) {
	return (*this > d) || (*this == d);
}
// <运算符重载
bool Date::operator < (const Date& d) {
	return  !(*this >= d);
}
// <=运算符重载
bool Date::operator <= (const Date& d) {
	return !(*this > d);
}
// !=运算符重载
bool Date::operator != (const Date& d) {
	return !(*this == d);
}
// 日期-日期 返回天数
int Date::operator-(const Date& d) {
	Date big = *this;
	Date small = d;
	int flag = 1;
	int n = 0;
	if (big < small) {
		big = d;
		small = *this;
		flag = -1;
	}
	while (big > small) {
		small++;
		n++;
	}
	return flag * n;
}



ostream& operator<<(ostream& out, const Date& d) {
	out << d._year << "/" << d._month << "/" << d._day;
	return out;
 }
istream& operator>>(istream& in, Date& d) {
	while(1){
		cout << "请依次输入年月日:";
		in >> d._year >> d._month >> d._day;
		if (!d.CheckDday()) {
			cout << "输入日期非法:";
			d.Print();
			cout << "请重新输入,";
		}
		else break;
	}
	return in;
 }

6. 取地址运算符重载

6.1 const成员函数

• 将const修饰的成员函数称之为const成员函数,const修饰成员函数放到成员函数参数列表的后⾯。

• const实际修饰该成员函数隐含的this指针,表明在该成员函数中不能对类的任何成员进⾏修改。const 修饰Date类的Print成员函数,Print隐含的this指针由 Date* const this 变为 const Date* const this

#include<iostream>
using namespace std;
class Date
{
	public :
	Date(int year = 1, int month = 1, int day = 1)
	{
		_year = year;
		_month = month;
		_day = day;
	} 
	// void Print(const Date* const this) const
		void Print() const
	{
		cout << _year << "-" << _month << "-" << _day << endl;
	}
private:
	int _year;
	int _month;
	int _day;
};
int main()
{
	// 这⾥⾮const对象也可以调⽤const成员函数是⼀种权限的缩⼩
	Date d1(2024, 7, 5);
	d1.Print();
	const Date d2(2024, 8, 5);
	d2.Print();
	return 0;
}

6.2 取地址运算符重载

取地址运算符重载分为普通取地址运算符重载和const取地址运算符重载,⼀般这两个函数编译器⾃动⽣成的就可以够我们⽤了,不需要去显⽰实现。除⾮⼀些很特殊的场景,⽐如我们不想让别⼈取到当前类对象的地址,就可以⾃⼰实现⼀份,胡乱返回⼀个地址。
 

class Date
{
	public :
	Date * operator&()
	{
		return this;
		// return nullptr;
	}
	const Date* operator&()const
	{
		return this;
		// return nullptr;
	}
private:
	int _year; // 年
	int _month; // ⽉
	int _day; // ⽇
};

那么第二期的内容就到这里了,觉得有收获的同学们可以给个点赞、关注、收藏哦,谢谢大家。

第一期链接

第三期链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值