1076 Forwards on Weibo (30分)

本文介绍了一个基于微博社交网络的算法,用于计算特定用户在限定层级内的最大转发潜力,通过广度优先搜索遍历用户及其间接关注者,评估信息传播范围。

Weibo is known as the Chinese version of Twitter. One user on Weibo may have many followers, and may follow many other users as well. Hence a social network is formed with followers relations. When a user makes a post on Weibo, all his/her followers can view and forward his/her post, which can then be forwarded again by their followers. Now given a social network, you are supposed to calculate the maximum potential amount of forwards for any specific user, assuming that only Llevels of indirect followers are counted.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers: N (≤1000), the number of users; and L (≤6), the number of levels of indirect followers that are counted. Hence it is assumed that all the users are numbered from 1 to N. Then N lines follow, each in the format:

M[i] user_list[i]

where M[i] (≤100) is the total number of people that user[i] follows; and user_list[i] is a list of the M[i] users that followed by user[i]. It is guaranteed that no one can follow oneself. All the numbers are separated by a space.

Then finally a positive K is given, followed by K UserID's for query.

Output Specification:

For each UserID, you are supposed to print in one line the maximum potential amount of forwards this user can trigger, assuming that everyone who can view the initial post will forward it once, and that only L levels of indirect followers are counted.

Sample Input:

7 3
3 2 3 4
0
2 5 6
2 3 1
2 3 4
1 4
1 5
2 2 6

Sample Output:

4
5

思路:使用bsf对图进行遍历,保存level,在level小于等于给定的l时,计数未被访问的节点,最后减去自身节点即可。

#include<iostream>
#include<cstring>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std;
vector<vector<int> > vec;
bool visit[1002] = {false};
int n, l;
int cnt;
void bfs(int start, int level){
    queue<int> que;
    que.push(start);
    visit[start] = true;
    while (!que.empty())
    {
        
        int z = que.size();
        
        while (z--)
        {
           
            
            for(int i = 0; i < vec[que.front()].size(); i++){

                if(!visit[vec[que.front()][i]] && level <= l){
                    visit[vec[que.front()][i]] = true;
                    que.push(vec[que.front()][i]);
    
                    cnt++;
                }
                
            }
            
            que.pop();
            
        }
        
        level++;
   
        
    }
    


}
int main(){

    
    cin >> n >> l;
    
    vec.resize(n + 1);
    for(int i = 1; i <= n; i++){

        int m;
        scanf("%d", &m);
        for(int j = 0; j < m; j++){
            int temp;
            scanf("%d", &temp);
            vec[temp].push_back(i);

        }
    }
    int k;
    cin >> k;
    for(int i = 0; i < k; i++){
        int id;
        cnt = 1;
        memset(visit, false, sizeof(visit));
        // fill(visit, visit + 1002, false);
        scanf("%d", &id);
        
        bfs(id, 1);
        printf("%d\n", cnt - 1);
    }
   
    return 0;
}

 

内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值