1129 Recommendation System~ (25分)

本文介绍了一个简单的推荐系统设计,该系统通过记录用户访问物品的频率来预测用户的偏好,并在每次查询时推荐用户可能感兴趣的前K个物品。文章提供了两种实现方法,一种是使用vector并优化排序减少计算压力,另一种是重构set中的比较运算符实现自动排序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Recommendation system predicts the preference that a user would give to an item. Now you are asked to program a very simple recommendation system that rates the user's preference by the number of times that an item has been accessed by this user.

Input Specification:

Each input file contains one test case. For each test case, the first line contains two positive integers: N (≤50,000), the total number of queries, and K (≤ 10), the maximum number of recommendations the system must show to the user. Then given in the second line are the indices of items that the user is accessing -- for the sake of simplicity, all the items are indexed from 1 to N. All the numbers in a line are separated by a space.

Output Specification:

For each case, process the queries one by one. Output the recommendations for each query in a line in the format:

query: rec[1] rec[2] ... rec[K]

where query is the item that the user is accessing, and rec[i] (i=1, ... K) is the i-th item that the system recommends to the user. The first K items that have been accessed most frequently are supposed to be recommended in non-increasing order of their frequencies. If there is a tie, the items will be ordered by their indices in increasing order.

Note: there is no output for the first item since it is impossible to give any recommendation at the time. It is guaranteed to have the output for at least one query.

Sample Input:

12 3
3 5 7 5 5 3 2 1 8 3 8 12

Sample Output:

5: 3
7: 3 5
5: 3 5 7
5: 5 3 7
3: 5 3 7
2: 5 3 7
1: 5 3 2
8: 5 3 1
3: 5 3 1
8: 3 5 1
12: 3 5 8

为了防止超时,以下使用两种方法解决

法一:由于每次最多输出k个item,又因为k<=10,为了减轻排序压力,在每次排序后将vector中第11个及以后的元素pop即可。

#include<iostream>
#include<vector>
#include<algorithm>
#include<cmath>
using namespace std;
int cnt[50001] = {0};
bool cmp(int a, int b){

    return cnt[a] != cnt[b] ? cnt[a] > cnt[b] : a < b;

}
struct node
{
    int item;
    int cnt;
    bool operator < (const node &a)const{

        return cnt != a.cnt ? cnt > a.cnt : item < a.item;

    }
};



int main(){
    int n, k;
    int a[50001];
    
    bool visit[50001] = {false};
    cin >> n >> k;
    vector<int> vec;
    for(int i = 0; i < n; i++){
        int temp;
        scanf("%d", &a[i]);
    }
    visit[a[0]] = true;
    cnt[a[0]]++;
    vec.push_back(a[0]);
    for(int i = 1; i < n; i++){
        printf("%d:", a[i]);
        for(int j = 0; j < min(int(vec.size()), k); j++){
            printf(" %d", vec[j]);

        }
        printf("\n");
        cnt[a[i]]++;
        if(!visit[a[i]]){
            vec.push_back(a[i]);
            visit[a[i]] = true;
        }
        sort(vec.begin(), vec.end(), cmp);

        if(vec.size() > 10)
            vec.pop_back();




    }



    return 0;
}

法二:比较常规的方法,需要重构set中的"<"运算符,以达到自动排序效果。

#include<iostream>
#include<vector>
#include<algorithm>
#include<cmath>
#include<set>
using namespace std;

struct node
{
    int item;
    int cnt;
    node(int item, int cnt) : item(item), cnt(cnt) {}
    bool operator < (const node &a)const{

        return cnt != a.cnt ? cnt > a.cnt : item < a.item;

    }
};



int main(){
    int n, k;
    int cnt[50001] = {0};
    cin >> n >> k;
    set<node> temp_set;

    int temp_first;
    scanf("%d", &temp_first);
    cnt[temp_first]++;
    temp_set.insert(node(temp_first, cnt[temp_first]));
    for(int i = 1; i < n; i++){
        int temp;
        scanf("%d", &temp);
        printf("%d:", temp);
        int count = 0;
        for(auto it = temp_set.begin(); it != temp_set.end() && count < k; it++){
            
            printf(" %d", it -> item);
            count++;

        }
        printf("\n");
        if(temp_set.find(node(temp, cnt[temp])) != temp_set.end()){

            temp_set.erase(node(temp, cnt[temp]));
        }
        cnt[temp]++;
        temp_set.insert(node(temp, cnt[temp]));

    }

    



    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值