频域增强-习题

题1

根据书中对傅立叶变换的定义,证明傅立叶变换的平移性质
f ( x , y ) e j 2 π ( u 0 x / M + v 0 y / N ) ⇔ F ( u − u 0 , v − v 0 ) f\left( {x,y} \right){e^{j2\pi \left( {{u_0}x/M + {v_0}y/N} \right)}} \Leftrightarrow F\left( {u - {u_0},v - {v_0}} \right) f(x,y)ej2π(u0x/M+v0y/N)F(uu0,vv0)
f ( x − x 0 , y − y 0 ) ⇔ F ( u , v ) e − j 2 π ( x 0 u / M + y 0 v / N ) f\left( {x - {x_0},y - {y_0}} \right) \Leftrightarrow F\left( {u,v} \right){e^{ - j2\pi \left( {{x_0}u/M + {y_0}v/N} \right)}} f(xx0,yy0)F(u,v)ej2π(x0u/M+y0v/N)
证:
先证 f ( x , y ) e j 2 π ( u 0 x / M + v 0 y / N ) ⇔ F ( u − u 0 , v − v 0 ) f\left( {x,y} \right){e^{j2\pi \left( {{u_0}x/M + {v_0}y/N} \right)}} \Leftrightarrow F\left( {u - {u_0},v - {v_0}} \right) f(x,y)ej2π(u0x/M+v0y/N)F(uu0,vv0)
对左式做离散傅里叶变换:
D F T ( f ( x , y ) e j 2 π ( u 0 x / M + v 0 y / N ) )      = ∑ x = 0 M − 1 ∑ y = 0 N − 1 ( f ( x , y ) e j 2 π ( u 0 x / M + v 0 y / N ) ) e − j 2 π ( u x / M , v y / N )      = ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e j 2 π ( u 0 x / M + v 0 y / N ) − j 2 π ( u x / M , v y / N )      = ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − j 2 π ( u − u 0 M x + v − v 0 N )      = F ( u − u 0 , v − v 0 ) \begin{array}{l} DFT\left( {f\left( {x,y} \right){e^{j2\pi \left( {{u_0}x/M + {v_0}y/N} \right)}}} \right)\\ \;\; = \sum\limits_{x = 0}^{M - 1} {\sum\limits_{y = 0}^{N - 1} {\left( {f\left( {x,y} \right){e^{j2\pi \left( {{u_0}x/M + {v_0}y/N} \right)}}} \right){e^{ - j2\pi \left( {ux/M,vy/N} \right)}}} } \\ \;\; = \sum\limits_{x = 0}^{M - 1} {\sum\limits_{y = 0}^{N - 1} {f\left( {x,y} \right){e^{j2\pi \left( {{u_0}x/M + {v_0}y/N} \right) - j2\pi \left( {ux/M,vy/N} \right)}}} } \\ \;\; = \sum\limits_{x = 0}^{M - 1} {\sum\limits_{y = 0}^{N - 1} {f\left( {x,y} \right){e^{ - j2\pi \left( {\frac{{u - {u_0}}}{M}x + \frac{{v - {v_0}}}{N}} \right)}}} } \\ \;\; = F\left( {u - {u_0},v - {v_0}} \right) \end{array} DFT(f(x,y)ej2π(u0x/M+v0y/N))=x=0M1y=0N1(f(x,y)ej2π(u0x/M+v0y/N))ej2π(ux/M,vy/N)=x=0M1y=0N1f(x,y)ej2π(u0x/M+v0y/N)j2π(ux/M,vy/N)=x=0M1y=0N1f(x,y)ej2π(Muu0x+Nvv0)=F(uu0,vv0)
得证

再证明性质 f ( x − x 0 , y − y 0 ) ⇔ F ( u , v ) e − j 2 π ( x 0 u / M + y 0 v / N ) f\left( {x - {x_0},y - {y_0}} \right) \Leftrightarrow F\left( {u,v} \right){e^{ - j2\pi \left( {{x_0}u/M + {y_0}v/N} \right)}} f(xx0,yy0)F(u,v)ej2π(x0u/M+y0v/N)
对右式做离散逆傅里叶变换:
I D E T ( F ( u , v ) e − j 2 π ( x 0 u / M + y 0 v / N ) )        = 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 ( F ( u , v ) e − j 2 π ( x 0 u / M + y 0 v / N ) ) e j 2 π ( u x / M + v y / N )        = 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 F ( u , v ) e − j 2 π ( x 0 u / M + y 0 v / N ) + j 2 π ( u x / M + v y / N )        = 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 F ( u , v ) e j 2 π ( x − x 0 M u + y − y 0 N v )        = f ( x − x 0 , y − y 0 ) \begin{array}{l} IDET\left( {F\left( {u,v} \right){e^{ - j2\pi \left( {{x_0}u/M + {y_0}v/N} \right)}}} \right)\\ \;\;\; = \frac{1}{{MN}}\sum\limits_{u = 0}^{M - 1} {\sum\limits_{v = 0}^{N - 1} {\left( {F\left( {u,v} \right){e^{ - j2\pi \left( {{x_0}u/M + {y_0}v/N} \right)}}} \right)} } {e^{j2\pi \left( {ux/M + vy/N} \right)}}\\ \;\;\; = \frac{1}{{MN}}\sum\limits_{u = 0}^{M - 1} {\sum\limits_{v = 0}^{N - 1} {F\left( {u,v} \right){e^{ - j2\pi \left( {{x_0}u/M + {y_0}v/N} \right) + j2\pi \left( {ux/M + vy/N} \right)}}} } \\ \;\;\; = \frac{1}{{MN}}\sum\limits_{u = 0}^{M - 1} {\sum\limits_{v = 0}^{N - 1} {F\left( {u,v} \right){e^{j2\pi \left( {\frac{{x - {x_0}}}{M}u + \frac{{y - {y_0}}}{N}v} \right)}}} } \\ \;\;\; = f\left( {x - {x_0},y - {y_0}} \right) \end{array} IDET(F(u,v)ej2π(x0u/M+y0v/N))=MN1u=0M1v=0N1(F(u,v)ej2π(x0u/M+y0v/N))ej2π(ux/M+vy/N)=MN1u=0M1v=0N1F(u,v)ej2π(x0u/M+y0v/N)+j2π(ux/M+vy/N)=MN1u=0M1v=0N1F(u,v)ej2π(Mxx0u+Nyy0v)=f(xx0,yy0)
得证

习题2

观察如下所示图像。右边的图像这样得到:(a)在原始图像左边乘以 ( − 1 ) x + y \left(-1\right)^{x+y} (1)x+y;(b) 计算离散傅里叶变换(DFT); (c) 对变换取复共轭; (d) 计算傅里叶反变换; (d) 结果的实部再乘以E ( − 1 ) x + y \left(-1\right)^{x+y} (1)x+y。(用数学方法解释为什么会产生右图的效果。)
在这里插入图片描述
答:
设原图像为 f ( x , y ) f\left( {x,y} \right) f(x,y)
步骤(a): f a ( x , y ) = ( − 1 ) x + y f ( x , y ) {f_a}\left( {x,y} \right) = {\left( { - 1} \right)^{x + y}}f\left( {x,y} \right) fa(x,y)=(1)x+yf(x,y)
步骤(b):由傅里叶变换的平移性质得 D F T ( f a ( x , y ) ) = F ( u − M 2 , v − N 2 ) DFT\left( {{f_a}\left( {x,y} \right)} \right) = F\left( {u - \frac{M}{2},v - \frac{N}{2}} \right) DFT(fa(x,y))=F(u2M,v2N)
步骤(c):由傅里叶变换的共轭对称性质得
F ∗ ( u − M 2 , v − N 2 ) = F ( − ( u − M 2 ) , − ( v − N 2 ) ) {F^*}\left( {u - \frac{M}{2},v - \frac{N}{2}} \right) = F\left( { - \left( {u - \frac{M}{2}} \right), - \left( {v - \frac{N}{2}} \right)} \right) F(u2M,v2N)=F((u2M),(v2N))
步骤(d):由傅里叶的伸缩性质 f ( a x ) ⇔ 1 ∣ a ∣ F ( u a ) f\left( {ax} \right) \Leftrightarrow \frac{1}{{\left| a \right|}}F\left( {\frac{u}{a}} \right) f(ax)a1F(au)结合步骤(a)得
I D F T ( F ( − ( u − M 2 ) , − ( v − N 2 ) ) ) = ( − 1 ) − ( x + y ) f ( − x , − y ) IDFT\left( {F\left( { - \left( {u - \frac{M}{2}} \right), - \left( {v - \frac{N}{2}} \right)} \right)} \right) = {\left( { - 1} \right)^{ - \left( {x + y} \right)}}f\left( { - x, - y} \right) IDFT(F((u2M),(v2N)))=(1)(x+y)f(x,y)
步骤(e): ( − 1 ) − ( x + y ) ( − 1 ) x + y f ( − x , − y ) = f ( − x , − y ) {\left( { - 1} \right)^{ - \left( {x + y} \right)}}{\left( { - 1} \right)^{x + y}}f\left( { - x, - y} \right) = f\left( { - x, - y} \right) (1)(x+y)(1)x+yf(x,y)=f(x,y)
因此图像最后旋转

习题3

高斯型低通滤波器在频域中的传递函数是
H ( u , v ) = A e − ( u 2 + v 2 ) 2 σ 2 H\left(u,v\right)=Ae^{-{(u^2+v^2)}{2\sigma^2}} H(u,v)=Ae(u2+v2)2σ2根据二维傅里叶性质,证明空间域的相应滤波器形式为 h ( x , y ) = A 2 π σ 2 e − 2 π 2 σ 2 ( x 2 + y 2 ) h\left(x,y\right)=A2\pi\sigma^2e^{-2\pi^2\sigma^2(x^2+y^2)} h(x,y)=A2πσ2e2π2σ2(x2+y2)(这些闭合形式只适用于连续变量情况。)
在证明中假设已经知道如下结论:函数 e − π ( x 2 + y 2 ) e^{-\pi(x^2+y^2)} eπ(x2+y2)的傅立叶变换为 e − π ( u 2 + v 2 ) e^{-\pi(u^2+v^2)} eπ(u2+v2)
证:
         (1)
u = 2 π σ U u = \sqrt {2\pi } \sigma U u=2π σU v = 2 π σ V v = \sqrt {2\pi } \sigma V v=2π σV,则上式变为(2)
I D F T ( H ( u , v ) ) = A 2 π σ 2 ∫ − ∞ ∞ ∫ − ∞ ∞ e − π ( U 2 + V 2 ) e j 2 π ( 2 π σ U x + 2 π σ V y ) d U d V IDFT\left( {H\left( {u,v} \right)} \right) = A2\pi {\sigma ^2}\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {{e^{ - \pi \left( {{U^2} + {V^2}} \right)}}{e^{j2\pi \left( {\sqrt {2\pi } \sigma Ux + \sqrt {2\pi } \sigma Vy} \right)}}dUdV} } IDFT(H(u,v))=A2πσ2eπ(U2+V2)ej2π(2π σUx+2π σVy)dUdV
根据题目给出得结论:函数 e − π ( x 2 + y 2 ) e^{-\pi(x^2+y^2)} eπ(x2+y2)的傅立叶变换为 e − π ( u 2 + v 2 ) e^{-\pi(u^2+v^2)} eπ(u2+v2),得到(3):
e − π ( x 2 + y 2 ) = ∫ − ∞ ∞ ∫ − ∞ ∞ e − π ( u 2 + v 2 ) e j 2 π ( u x + v y ) d u d v {e^{ - \pi \left( {{x^2} + {y^2}} \right)}} = \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {{e^{ - \pi \left( {{u^2} + {v^2}} \right)}}{e^{j2\pi \left( {ux + vy} \right)}}dudv} } eπ(x2+y2)=eπ(u2+v2)ej2π(ux+vy)dudv
x = 2 π σ X x = \sqrt {2\pi } \sigma X x=2π σX y = 2 π σ Y y = \sqrt {2\pi } \sigma Y y=2π σY,等式两边再乘以 A 2 π σ 2 A2\pi {\sigma ^2} A2πσ2 ,则上式变为
A 2 π σ 2 e − 2 π 2 σ 2 ( X 2 + Y 2 ) = A 2 π σ 2 ∫ − ∞ ∞ ∫ − ∞ ∞ e − π ( u 2 + v 2 ) e j 2 π ( 2 π σ u X + 2 π σ v Y ) d u d v A2\pi {\sigma ^2}{e^{ - 2{\pi ^2}{\sigma ^2}\left( {{X^2} + {Y^2}} \right)}} = A2\pi {\sigma ^2}\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {{e^{ - \pi \left( {{u^2} + {v^2}} \right)}}{e^{j2\pi \left( {\sqrt {2\pi } \sigma uX + \sqrt {2\pi } \sigma vY} \right)}}dudv} } A2πσ2e2π2σ2(X2+Y2)=A2πσ2eπ(u2+v2)ej2π(2π σuX+2π σvY)dudv
对比式(2)和式(4)得:
I D F T ( H ( u , v ) ) = A 2 π σ 2 e − 2 π 2 σ 2 ( X 2 + Y 2 ) IDFT\left( {H\left( {u,v} \right)} \right) = A2\pi {\sigma ^2}{e^{ - 2{\pi ^2}{\sigma ^2}\left( {{X^2} + {Y^2}} \right)}} IDFT(H(u,v))=A2πσ2e2π2σ2(X2+Y2)得证

习题4

在这里插入图片描述
答:没有区别。对图像补零是为了使直接卷积公式法和DFT方法产生得卷积结果相同,后者必须对函数周期补足。考虑到傅里叶变换的周期性,如果将左边的图像以覆盖整个平面的方式复制多次,将形成一个棋盘,棋盘中每个方格都是本图片和黑色的扩展部分。如果将右边的图片做同样的处理,也得到相同的结果。
在这里插入图片描述

习题5

请证明第二版课本习题4.5中提及的频域内高通滤波器与低通滤波器的关系式子。
在这里插入图片描述
答:可以认为原始图像由高频部分和低频部分组成:
f ( x , y ) = f r ( x , y ) + f p ( x , y ) f\left( {x,y} \right) = {f_r}\left( {x,y} \right) + {f_p}\left( {x,y} \right) f(x,y)=fr(x,y)+fp(x,y)
而高频部分和低频部分可以由原图像作卷积得到,即:
f ( x , y ) = f ( x , y ) ∗ h b r ( x , y ) + f ( x , y ) ∗ h b p ( x , y ) f\left( {x,y} \right) = f\left( {x,y} \right)*{h_{br}}\left( {x,y} \right) + f\left( {x,y} \right)*{h_{bp}}\left( {x,y} \right) f(x,y)=f(x,y)hbr(x,y)+f(x,y)hbp(x,y)
等上式两边分别做傅里叶变换:
F ( u , v ) = F ( u , v ) H b r ( u , v ) + F ( u , v ) H b p ( u , v ) F ( u , v ) = F ( u , v ) ( H b r ( u , v ) + H b p ( u , v ) ) 1 = H b r ( u , v ) + H b p ( u , v ) H b p ( u , v ) = 1 − H b r ( u , v ) \begin{array}{l} F\left( {u,v} \right) = F\left( {u,v} \right){H_{br}}\left( {u,v} \right) + F\left( {u,v} \right){H_{bp}}\left( {u,v} \right)\\ F\left( {u,v} \right) = F\left( {u,v} \right)\left( {{H_{br}}\left( {u,v} \right) + {H_{bp}}\left( {u,v} \right)} \right)\\ 1 = {H_{br}}\left( {u,v} \right) + {H_{bp}}\left( {u,v} \right)\\ {H_{bp}}\left( {u,v} \right) = 1 - {H_{br}}\left( {u,v} \right) \end{array} F(u,v)=F(u,v)Hbr(u,v)+F(u,v)Hbp(u,v)F(u,v)=F(u,v)(Hbr(u,v)+Hbp(u,v))1=Hbr(u,v)+Hbp(u,v)Hbp(u,v)=1Hbr(u,v)
所以 H b p ( u , v ) = 1 − H b r ( u , v ) {H_{bp}}\left( {u,v} \right) = 1 - {H_{br}}\left( {u,v} \right) Hbp(u,v)=1Hbr(u,v)得证

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值