Submodularity: Total Order

本文深入探讨了完全有序集的概念,即在集合上定义的关系,满足自反性、反对称性和传递性的偏序条件,以及可比性条件,确保任意两个元素都可以进行比较。文章还提到了所有有限的完全有序集都是良序的,并且任何两个具有相同元素数量的完全有序集都是序同构的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Total Order

A total order (or “totally ordered set,” or “linearly ordered set”) is a set plus a relation on the set (called a total order) that satisfies the conditions for a partial order plus an additional condition known as the comparability condition. A relation <= is a total order on a set S (“<= totally orders S”) if the following properties hold.

  1. Reflexivity: a<=a for all a in S.

  2. Antisymmetry: a<=b and b<=a implies a=b.

  3. Transitivity: a<=b and b<=c implies a<=c.

  4. Comparability (trichotomy law): For any a,b in S, either a<=b or b<=a.

The first three are the axioms of a partial order, while addition of the trichotomy law defines a total order.

Every finite totally ordered set is well ordered. Any two totally ordered sets with k elements (for k a nonnegative integer) are order isomorphic, and therefore have the same order type (which is also an ordinal number).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值