HDU-4360-As long as Binbin loves Sangsang

本文探讨了一个在特定约束下寻找最短路径的问题,即必须遵循LOVE序列的ID顺序行走,并最终形成完整的LOVE序列。通过将每个节点拆分为四个状态节点来跟踪到达节点时的不同序列结尾情况,简化了问题求解过程。文章还特别考虑了数据集中仅包含一个点的特殊情况,并提供了相应的处理方法。

这个题其实就是求最短路径,只不过在走路的时候有个限制,必须按照LOVE这样的ID顺序走,并且走到终点必须是完整的LOVE序列,其实不难想到对每个结点拆分4个,分别表示到该结点为L,LO,LOV,LOVE结尾的最短路径,剩下的就比较简单了。

然后这个题无限恶心的地方就在于,数据含有只有一个点的情况,也就是说从1出发的所有路都连向自己,并且能够构成LOVE序列,这种情况需要处理下。

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
const long long inf=1LL<<55;
const int maxn=2000;
const int maxm=40000;
int n,m,e,head[maxn],pnt[maxm],nxt[maxm],id[maxm],num[maxn][4];
long long cost[maxm],dist[maxn][4],smin[4];
bool vis[maxn];
queue<int> q;
int GetIndex(char c)
{
    switch(c)
    {
        case 'L':return 0;
        case 'O':return 1;
        case 'V':return 2;
        case 'E':return 3;
    }
    return 0;
}
void AddEdge(int u,int v,int c,char ids)
{
    pnt[e]=v;nxt[e]=head[u];cost[e]=c;id[e]=GetIndex(ids);head[u]=e++;
}
void Spfa(int st,int des)
{
    memset(vis,0,sizeof(vis));
    memset(num,0,sizeof(num));
    for(int i=0;i<=n;i++)
        for(int j=0;j<4;j++)
            dist[i][j]=inf;
    q.push(st);
    dist[st][3]=0;
    while(!q.empty())
    {
        int u=q.front();
        vis[u]=0;
        q.pop();
        for(int i=head[u];i!=-1;i=nxt[i])
        {
            int v=pnt[i];
            int sid=id[i];
            if(dist[u][(sid-1+4)%4]+cost[i]<dist[v][sid])
            {
                dist[v][sid]=dist[u][(sid-1+4)%4]+cost[i];
                num[v][sid]=num[u][(sid-1+4)%4]+1;
                if(!vis[v])
                {
                    q.push(v);
                    vis[v]=1;
                }
            }
            else if(dist[u][(sid-1+4)%4]+cost[i]==dist[v][sid])
                num[v][sid]=max(num[v][sid],num[u][(sid-1+4)%4]+1);
        }
    }
    long long mini=dist[n][3];
    int ans=num[n][3];
    ans/=4;
    if(mini==inf||ans==0)
    {
        printf("Binbin you disappoint Sangsang again, damn it!\n");
        return;
    }
    printf("Cute Sangsang, Binbin will come with a donkey after travelling %I64d meters and finding %d LOVE strings at last.\n",mini,ans);
}
int main()
{
    int T,cas=1;
    scanf("%d",&T);
    while(T--)
    {
        e=0;
        memset(head,-1,sizeof(head));
        scanf("%d%d",&n,&m); 
        smin[0]=smin[1]=smin[2]=smin[3]=inf;
        for(int i=0;i<m;i++)
        {
            int u,v,c;
            char st[4];
            scanf("%d%d%d%s",&u,&v,&c,st);
            AddEdge(u,v,c,st[0]);
            AddEdge(v,u,c,st[0]);
            smin[GetIndex(st[0])]=min(smin[GetIndex(st[0])],(long long )c);
        }
        printf("Case %d: ",cas++);
        if(n==1)
        {
            if(smin[0]<inf&&smin[1]<inf&&smin[2]<inf&&smin[3]<inf)
                printf("Cute Sangsang, Binbin will come with a donkey after travelling %I64d meters and finding 1 LOVE strings at last.\n",smin[0]+smin[1]+smin[2]+smin[3]);
            else
                printf("Binbin you disappoint Sangsang again, damn it!\n");
            continue;
        }
        Spfa(1,n);
    }
    return 0;
}


内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值