8、类量子神经网络:原理、特性与稳定性分析

类量子神经网络原理与稳定性分析

类量子神经网络:原理、特性与稳定性分析

1. 类量子网络基础

在类量子网络中,哈密顿量 $H$ 中的每个跳跃算符 $J_{ij}a^{\dagger} ia_j$ 会将子空间 $\wedge^n H$ 映射到自身,这使得 $H$ 呈现出块对角形式。这一特性意味着由基本态叠加表示的基本激发模式,如 $|1 {i_1}, \ldots, 1_{i_m}\rangle = e_{i_1} \wedge \cdots \wedge e_{i_m}$,会被映射到相同等级(或占据数)的状态,即占据数在时间上是守恒的。这是因为 $H$ 本身代表了网络在孤立状态下的无限小时间演化。若要使占据数随时间变化,就需要在 $H$ 中添加代表外部场或刺激的项,如方程 (2.4.34) 所示。

经典的状态空间理论只能处理单占据状态,也就是一级子空间 $H \subset E(H)$ 中的元素。对于更高占据数的状态,即 $n > 1$ 时 $\wedge^n H$ 中的状态,经典理论无法处理。而且,经典处理方法甚至在原理上都无法对纯态和叠加态进行操作或语义上的区分,叠加态的退相干在这些理论中也没有意义。

如果涉及多模态 b 神经元,情况会有所不同,会增加额外的状态和替代(即叠加)的激发模式,有些包含一组输出模式,有些则包含其他组输出模式。

2. 激发模式与本征态

2.1 一般激发模式表示

在时间 $t$ 时,$E(H)$ 的一般元素 $\xi$ 可以表示为:
[
\xi(t) = \sum_{p\geq0} \sum_{i_1<\cdots<i_p} \alpha_{i_1\cdot

【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)内容概要:本文介绍了基于蒙特卡洛和拉格朗日方法的电动汽车充电站有序充电调度优化方案,重点在于采用分散式优化策略应对分时电价机制下的充电需求管理。通过构建数学模型,结合不确定性因素如用户充电行为和电网负荷波动,利用蒙特卡洛模拟生成大量场景,并运用拉格朗日松弛法对复杂问题进行分解求解,从而实现全局最优或近似最优的充电调度计划。该方法有效降低了电网峰值负荷压力,提升了充电站运营效率经济效益,同时兼顾用户充电便利性。 适合人群:具备一定电力系统、优化算法和Matlab编程基础的高校研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。 使用场景及目标:①应用于电动汽车充电站的日常运营管理,优化充电负荷分布;②服务于城市智能交通系统规划,提升电网交通系统的协同水平;③作为学术研究案例,用于验证分散式优化算法在复杂能源系统中的有效性。 阅读建议:建议读者结合Matlab代码实现部分,深入理解蒙特卡洛模拟拉格朗日松弛法的具体实施步骤,重点关注场景生成、约束处理迭代收敛过程,以便在实际项目中灵活应用改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值