HDU1069-dp水题

本文探讨了一道经典的算法题目,即如何通过堆叠不同尺寸的长方体以达到最大高度,同时确保每个上方的长方体尺寸严格小于下方的长方体。文章提供了详细的解题思路与AC代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Monkey and Banana

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 19134    Accepted Submission(s): 10181


Problem Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.
 

Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
 

Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".
 

Sample Input
1 10 20 30 2 6 8 10 5 5 5 7 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 5 31 41 59 26 53 58 97 93 23 84 62 64 33 83 27 0
 

Sample Output
Case 1: maximum height = 40 Case 2: maximum height = 21 Case 3: maximum height = 28
Case 4: maximum height = 342

题意:输入一个n,表示有n个长方体,每个长方体无限多。问最高可以堆多高,条件是长和宽都比下面的小

思路:其实每个长方体就只能摆出6种姿势,数据是30,30*6没多大,对数据排序,然后用LIS就可以了

坑点:好像不可以用nlogn的算法,因为那个可能会改变上升子序列的数据,答案可能会错(个人认为...我也没试过)

状态转移方程:

for (i=2;i<j;i++)
                {
                    dp[i]=num[i].h;        //dp[i]表示第i个长方体为最上面那个
                    for (k=i-1;k>=1;k--)
                        if (num[k].l>num[i].l&&num[k].w>num[i].w)
                            dp[i]=max(dp[i],dp[k]+num[i].h);    //如果有长和宽都比num[i]大的,放在num[i]的下面,dp[i]更新
                }

AC代码:

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=200;
int dp[maxn];
struct node
{
    int l,w,h;
}num[maxn],array[maxn];
bool cmp(const node &a,const node &b)
{
    if (a.l>b.l)
        return true;
    return false;
}
int main()
{
    int n,i,j,k;
    node m,t;
    int s=1;
    while (cin>>n&&n)
        {
            j=1;
            memset(num,0,sizeof(num));
            for (i=1;i<=n;i++)
                {
                    cin>>t.l>>t.w>>t.h;
                    num[j++]=t;
                    m.l=t.l;m.w=t.h;m.h=t.w;
                    num[j++]=m;
                    m.l=t.w;m.w=t.l;m.h=t.h;
                    num[j++]=m;
                    m.l=t.w;m.w=t.h;m.h=t.l;
                    num[j++]=m;
                    m.l=t.h;m.w=t.l;m.h=t.w;
                    num[j++]=m;
                    m.l=t.h;m.w=t.w;m.h=t.l;
                    num[j++]=m;
                }
            sort(num+1,num+j,cmp);            //把长宽大的排序到前面
            memset(dp,0,sizeof(dp));
    /*        for (i=1;i<j;i++)
                cout<<num[i].l<<" "<<num[i].w<<" "<<num[i].h<<endl;*/
            for (i=2;i<j;i++)
                {
                    dp[i]=num[i].h;
                    for (k=i-1;k>=1;k--)
                        if (num[k].l>num[i].l&&num[k].w>num[i].w)
                            dp[i]=max(dp[i],dp[k]+num[i].h);
                }
            int ans=0;
            for (i=1;i<j;i++)        //这里找出最高
                if (dp[i]>ans)
                    ans=dp[i];
            printf("Case %d: maximum height = %d\n",s++,ans);
        }
    return 0;
}

### 关于HDU - 6609 的目解析 由于当前未提供具体关于 HDU - 6609 目的详细描述,以下是基于一般算法竞赛型可能涉及的内容进行推测和解答。 #### 可能的目背景 假设该目属于动态规划类问(类似于多重背包问),其核心在于优化资源分配或路径选择。此类问通常会给出一组物品及其属性(如重量、价值等)以及约束条件(如容量限制)。目标是最优地选取某些物品使得满足特定的目标函数[^2]。 #### 动态转移方程设计 如果此确实是一个变种的背包问,则可以采用如下状态定义方法: 设 `dp[i][j]` 表示前 i 种物品,在某种条件下达到 j 值时的最大收益或者最小代价。对于每一种新加入考虑范围内的物体 k ,更新规则可能是这样的形式: ```python for i in range(n): for s in range(V, w[k]-1, -1): dp[s] = max(dp[s], dp[s-w[k]] + v[k]) ``` 这里需要注意边界情况处理以及初始化设置合理值来保证计算准确性。 另外还有一种可能性就是它涉及到组合数学方面知识或者是图论最短路等相关知识点。如果是后者的话那么就需要构建相应的邻接表表示图形结构并通过Dijkstra/Bellman-Ford/Floyd-Warshall等经典算法求解两点间距离等问了[^4]。 最后按照输出格式要求打印结果字符串"Case #X: Y"[^3]。 #### 示例代码片段 下面展示了一个简单的伪代码框架用于解决上述提到类型的DP: ```python def solve(): t=int(input()) res=[] cas=1 while(t>0): n,k=list(map(int,input().split())) # Initialize your data structures here ans=find_min_unhappiness() # Implement function find_min_unhappiness() res.append(f&#39;Case #{cas}: {round(ans)}&#39;) cas+=1 t-=1 print("\n".join(res)) solve() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值