You're given a tree with weights of each node, you need to find the maximum subtree of specified size of this tree.
Tree Definition
A tree is a connected graph which contains no cycles.
Input
There are several test cases in the input.
The first line of each case are two integers N(1 <= N <= 100), K(1 <= K <= N), where N is the number of nodes of this tree, and K is the subtree's size, followed by a line with N nonnegative integers, where the k-th integer indicates the weight of k-th node.
The following N - 1 lines describe the tree, each line are two integers which means there is an edge between these two nodes. All indices above are zero-base and it is guaranteed that the description of the tree is correct.
Output
One line with a single integer for each case, which is the total weights of the maximum subtree.
Sample Input
3 1
10 20 30
0 1
0 2
3 2
10 20 30
0 1
0 2
Sample Output
30
40
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<vector>
using namespace std;
const int MAXN=105;
vector<int> tree[MAXN];
int n,k;
int dp[MAXN][MAXN]; //dp[i][k]表示以i为根节点的最大的k个节点的和
int vis[MAXN];
int maxn;
void dfs(int u)
{
vis[u]=1;
for(int i=0;i<tree[u].size();i++)
{
int v=tree[u][i];
if(!vis[v])
{
dfs(v);
for(int j=k;j>=1;j--) //每个根节点不仅要找出k个节点和的最大值,还要算出1到k-1的 对应的节点和的最大值,是为了给后面的根节点用
for(int m=1;m<j;m++)
dp[u][j]=max(dp[u][j],dp[u][m]+dp[v][j-m]); //根节点的m个和 加上 儿子的j-m个和 一共j个和 不断地更新dp[u][j]
}
}
}
int main()
{
while(scanf("%d%d",&n,&k)!=EOF)
{
maxn=0;
for(int i=0;i<n;i++) //每次一定不要忘记将树清空!!!
tree[i].clear();
memset(dp,0,sizeof(dp));
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++)
scanf("%d",&dp[i][1]);
for(int i=0;i<n-1;i++)
{
int u,v;
scanf("%d%d",&u,&v);
tree[u].push_back(v);
tree[v].push_back(u);
}
dfs(0);
for(int i=0;i<n;i++)
{
if(dp[i][k]>maxn) maxn=dp[i][k];
}
printf("%d\n",maxn);
}
return 0;
}
本文介绍了一种算法,用于解决给定带权节点树中寻找指定大小的最大子树的问题。通过深度优先搜索(DFS)策略,递归地计算以每个节点为根的最大子树的总权重。
451

被折叠的 条评论
为什么被折叠?



