Tree of Tree
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 37 Accepted Submission(s) : 19
Tree Definition
A tree is a connected graph which contains no cycles.
Input
There are several test cases in the input.
The first line of each case are two integers N(1 <= N <= 100), K(1 <= K <= N), where N is the number of nodes of this tree, and K is the subtree's size, followed by a line with N nonnegative integers, where the k-th integer indicates the weight of k-th node. The following N - 1 lines describe the tree, each line are two integers which means there is an edge between these two nodes. All indices above are zero-base and it is guaranteed that the description of the tree is correct.
Output
One line with a single integer for each case, which is the total weights of the maximum subtree.
Sample Input
3 1 10 20 30 0 1 0 2 3 2 10 20 30 0 1 0 2
Sample Output
30 40
#include<cstdio> #include<cmath> #include<cstring> #include<string> #include<iostream> #include<iterator> #include<vector> #include<queue> #include<stack> #include<list> #include<set> #include<map> #include<algorithm> using namespace std; #define LL long long #define inf 1<<29 int k; vector<int>v[110]; int dp[110][110]; int vis[110]; void DFS(int x) { vis[x]=1; for(int i=0;i<v[x].size();i++) { int d=v[x][i]; if(!vis[d]) { DFS(d); for(int j=k;j>=1;j--) { for(int r=1;r<=j;r++) { dp[x][j]=max(dp[x][r]+dp[d][j-r],dp[x][j]); } } } } } int main() { int n; while(scanf("%d%d",&n,&k)!=EOF) { for(int i=0;i<=100;i++) { vis[i]=0; v[i].clear(); } memset(dp,0,sizeof(dp)); int a,b; for(int i=0;i<n;i++) scanf("%d",&dp[i][1]); for(int i=0;i<n-1;i++) { scanf("%d%d",&a,&b); v[a].push_back(b); v[b].push_back(a); } DFS(0); int ans=0; for(int i=0;i<n;i++) { ans=max(ans,dp[i][k]); } printf("%d\n",ans); } return 0; }