Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Java:
1.http://blog.youkuaiyun.com/linhuanmars/article/details/23731355
public boolean isBalanced(TreeNode root)
{
return helper(root)>=0;
}
private int helper(TreeNode root)
{
if(root == null)
return 0;
int left = helper(root.left);
int right = helper(root.right);
if(left<0 || right<0)
return -1;
if(Math.abs(left-right)>=2)
return -1;
return Math.max(left,right)+1;
}
2. http://blog.youkuaiyun.com/fightforyourdream/article/details/18693131
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
if(root == null){
return true;
}
// 如果子树高度差大于1,则不平衡
if(Math.abs(depth(root.left)-depth(root.right)) > 1){
return false;
}
// 递归检查左子树和右子树的平衡性
return isBalanced(root.left) && isBalanced(root.right);
}
// 帮助方法,返回树的高度
private int depth(TreeNode root){
if(root == null){
return 0;
}
return 1 + Math.max(depth(root.left), depth(root.right));
}
}
3. http://standalone.iteye.com/blog/1856516
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
return height(root) != -1;
}
private int height(TreeNode root)
{
if(root == null)
return 0;
int leftHeight = height(root.left);
if(leftHeight == -1)
return -1;
int rightHeight = height(root.right);
if(rightHeight == -1)
return -1;
if(Math.abs(leftHeight - rightHeight) > 1)
return -1;
return 1 + Math.max(leftHeight, rightHeight);
}
}