Vus the Cossack has two binary strings, that is, strings that consist only of “0” and “1”. We call these strings a and b. It is known that |b|≤|a|, that is, the length of b is at most the length of a.
The Cossack considers every substring of length |b| in string a. Let’s call this substring c. He matches the corresponding characters in b and c, after which he counts the number of positions where the two strings are different. We call this function f(b,c).
For example, let b=00110, and c=11000. In these strings, the first, second, third and fourth positions are different.
Vus the Cossack counts the number of such substrings c such that f(b,c) is even.
For example, let a=01100010 and b=00110. a has four substrings of the length |b|: 01100, 11000, 10001, 00010.
f(00110,01100)=2;
f(00110,11000)=4;
f(00110,10001)=4;
f(00110,00010)=1.
Since in three substrings, f(b,c) is even, the answer is 3.
Vus can not find the answer for big strings. That is why he is asking you to help him.
Input
The first line contains a binary string a (1≤|a|≤106) — the first string.
The second line contains a binary string b (1≤|b|≤|a|) — the second string.
Output
Print one number — the answer.
Solution 1
这是我在考场上想出来的做法,但是写挂了
考虑串b移动之后会发生什么
例如
00110 ->
*00110
可以发现对于没移动的之前的第
i
i
i位,如果
i
−
1
i-1
i−1位和
i
i
i位相同,那么移动后在
i
i
i这个位置上对答案的贡献是不会变的。
那么考虑不相同的时候假设第
i
i
i位是
0
0
0现在匹配到
1
1
1,
i
−
1
i-1
i−1位是
1
1
1那么移动后在
i
i
i这个位置上对答案的贡献是
−
1
-1
−1。
如果第
i
i
i位匹配到
0
0
0,那么移动后对答案的贡献就是
+
1
+1
+1
如果第
i
i
i是
1
1
1情况类似。
也就是如果
b
b
b串
i
i
i位和
i
−
1
i-1
i−1位不一样,每移动一次对答案就会有一个^1的贡献(答案只考虑奇偶)
对b串求一次这个
int trans = 0;
for(int i=1;i<n;i++){
trans ^= (str[i]-'0')^(str[i+1]-'0');
}
但是
b
b
b串移动之后,答案异或上b串的
t
r
a
n
s
trans
trans后只是更新了蓝色部分对答案的贡献。
还需要手动更新红色和绿色。
感觉我说的有点乱,可以看代码理解一下。
ps:b串的
t
r
a
n
s
trans
trans就是第一个异或最后一个,我也不知道为什么这么神奇。
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 2e6;
char s1[MAXN],s2[MAXN];
int n,m;
int main(){
scanf("%s",s1+1);
scanf("%s",s2+1);
n=strlen(s1+1);
m=strlen(s2+1);
int flag = 0;
flag ^= s2[1] ^ s2[m];
int ans = 0;
int tmp = 0;
for(int i=1;i<=m;i++){
if(s1[i] != s2[i])
tmp ^= 1;
}
if(!tmp) ans ++;
int point = m;
while(point < n){
point ++;
tmp ^= flag;
if(s1[point-m]!=s2[1])
tmp ^= 1;
if(s1[point] != s2[m]){
tmp ^= 1;
}
if(!tmp){
ans ++;
}
}
cout<<ans;
return 0;
}
Solution 2
我在结束之后
O
r
z
Orz
Orz了一下其他人的代码
发现了这个做法
考虑两个等长的
0
/
1
0/1
0/1串
a
,
b
a,b
a,b,
a
a
a中有
s
a
s_a
sa个
1
1
1,
b
b
b中有
s
b
s_b
sb个
1
1
1
那么这两个串不相同的位置的个数的就行就是
s
a
+
s
b
s_a+s_b
sa+sb的奇偶性
为什么?
先考虑只有
0
0
0和
1
1
1匹配和
0
0
0和
0
0
0匹配,显然正确,并且不同的个数就是
s
a
+
s
b
s_a+s_b
sa+sb
因为如果有多个
1
1
1匹配
1
1
1,那么不同的个数就是
s
a
+
s
b
−
k
∗
2
s_a+s_b-k*2
sa+sb−k∗2减掉的数是
2
2
2的倍数,不改变奇偶性。
看完之后感觉自己是个zz
Solution 3
这不是个fft板子题吗