11202326

class adjust_net(nn.Module):
    def __init__(self, out_channels=64, middle_channels=32):
        super(adjust_net, self).__init__()

        self.model = nn.Sequential(
            nn.Conv2d(2, middle_channels, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.AvgPool2d(2),

            nn.Conv2d(middle_channels, middle_channels * 2, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.AvgPool2d(2),

            nn.Conv2d(middle_channels * 2, middle_channels * 4, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.AvgPool2d(2),

            nn.Conv2d(middle_channels * 4, out_channels * 2, 1, padding=0)
        )

        self.model2 = nn.Sequential(
            nn.Conv2d(2, middle_channels, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2),


            nn.Conv2d(middle_channels, middle_channels * 2, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2),

            nn.Conv2d(middle_channels * 2, middle_channels * 4, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2),

            nn.Conv2d(middle_channels * 4, out_channels * 2, 1, padding=0)
        )

        self.conv = nn.Sequential(
                nn.Conv2d(out_channels * 4, out_channels * 2, kernel_size=5, stride=2, padding=2, bias=False),
                nn.ReLU(inplace=True)
            )

    def forward(self, x):
        out = self.model(x)
        out2 = self.model2(x)
        out = torch.concat((out, out2), dim=1)
        out = self.conv(out)
        out = F.adaptive_avg_pool2d(out, (1, 1))
        out1 = out[:, :out.shape[1] // 2]
        out2 = out[:, out.shape[1] // 2:]
        return out1, out2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值