2024102301

部署运行你感兴趣的模型镜像
from keras import Input
from keras.layers import Conv2D, MaxPooling2D, Dropout, BatchNormalization
from keras.layers import concatenate, Conv2DTranspose, Activation
from keras.models import Model
from tensorflow.keras.optimizers import Adam


def EnhancedNetOptimized(pretrained_weights=None):
    input_shape = (None, None, 1)
    inputs = Input(shape=input_shape, name='input_img')

    conv1 = Conv2D(16, 3, activation='relu', padding='same')(inputs)
    bn1 = BatchNormalization()(conv1)
    drop1 = Dropout(0.3)(bn1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(drop1)

    conv2 = Conv2D(24, 3, activation='relu', padding='same')(pool1)
    bn2 = BatchNormalization()(conv2)
    drop2 = Dropout(0.3)(bn2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(drop2)

    conv3 = Conv2D(32, 3, activation='relu', padding='same')(pool2)
    bn3 = BatchNormalization()(conv3)
    drop3 = Dropout(0.3)(bn3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(drop3)

    conv4 = Conv2D(40, 3, activation='relu', padding='same')(pool3)
    bn4 = BatchNormalization()(conv4)
    drop4 = Dropout(0.3)(bn4)

    up5 = Conv2DTranspose(32, 2, strides=(2, 2), padding='same')(drop4)
    concat5 = concatenate([drop3, up5], axis=3)
    conv5 = Conv2D(32, 3, activation='relu', padding='same')(concat5)
    bn5 = BatchNormalization()(conv5)
    drop5 = Dropout(0.3)(bn5)

    up6 = Conv2DTranspose(24, 2, strides=(2, 2), padding='same')(drop5)
    concat6 = concatenate([drop2, up6], axis=3)
    conv6 = Conv2D(24, 3, activation='relu', padding='same')(concat6)
    bn6 = BatchNormalization()(conv6)
    drop6 = Dropout(0.3)(bn6)

    up7 = Conv2DTranspose(16, 2, strides=(2, 2), padding='same')(drop6)
    concat7 = concatenate([drop1, up7], axis=3)
    conv7 = Conv2D(16, 3, activation='relu', padding='same')(concat7)
    bn7 = BatchNormalization()(conv7)
    drop7 = Dropout(0.3)(bn7)

    conv8 = Conv2D(1, 1, padding='same')(drop7)
    output = Activation('sigmoid')(conv8)

    model = Model(inputs=inputs, outputs=output)

    opt = Adam(learning_rate=1e-4)
    model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy'])

    if pretrained_weights:
        model.load_weights(pretrained_weights)

    return model

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

RD2025040902W RD2025010301W LX2025073003E LX2025073002E LX2025073001E LX2025071604E LX2025071603E LX2025071602E LX2025071102E LX2025071101E LX2025070301E LX2025062703E LX2025060601E LX2025052801E LX2025052710E LX2025052709E LX2025052708E LX2025052702E LX2025042908E LX2025042907E LX2025041802E LX2025041102E LX2025041101E LX2025032801E LX2025031402E LX2025022104E LX2025022102E LX2025022101E LX2025022002E LX2025012302E LX2024122801E LX2024121901E LX2024121302E LX2024112903E LX2024112602E LX2024112001E LX2024103001E LX2024102904E LX2024102901E LX2024102401E LX2024102301E LX2024101402E LX2024101401E LX2024092002E LX2024091901E LX2024091401E LX2024091001E LX2024081401E LX2024081302E LX2024080101E LX2024073001E LX2024070803E LX2024070802E LX2024070801E LX2024070402E LX2024070401E LX2024062701E LX2024061901E LX2024060601E LX2024060401E LX2024052201E LX2024051301E LX2024032002E LX2024032001E LX2024030401E-1 LX2024020102E LX2023122801E LX2023100801E-5 LX2023100801E LX2023100702E-1 LW2025091001W LW2025090904E LW2025090903E LW2025090902E LW2025090101W LW2025082821W LW2025082819W LW2025082817W LW2025082816W LW2025082815W LW2025082814W LW2025082813W LW2025082812W LW2025082811W LW2025082810W LW2025082809W LW2025082808W LW2025082807W LW2025082806W LW2025082805W LW2025082804W LW2025082803W LW2025082802W LW2025082504W LW2025082503W LW2025082502W LW2025082501W LW2025081804E LW2025081302W LW2025081301W LW2025073020W LW2025073019W LW2025073017W LW2025073014W LW2025073013W LW2025073011W LW2025073010W LW2025073009W LW2025073008W LW2025073007W LW2025073006W LW2025073005W LW2025073003W LW2025071109W LW2025071108W LW2025071107W LW2025071106W LW2025071105W LW2025071104W LW2025071103W LW2025071102W LW2025070305W LW2025070304W LW2025070303W LW2025062707W LW2025062706W LW2025062704W LW2025062703W LW2025062701W LW2025062616W LW2025062614W LW2025062613W LW2025062612W LW2025062611W LW2025062610W LW2025062608W LW2025062607W LW2025062606W LW2025062604W LW2025062503W LW2025062401W LW2025052816W LW2025052717W LW2025052714W,帮我把这些单号分别用‘’括起来并每个用英文逗号隔开
10-07
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值