20241022_02

部署运行你感兴趣的模型镜像

from keras import Input
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Dropout
from keras.models import Model
from keras.layers import concatenate
from tensorflow.keras.optimizers import Adam
from keras.layers import Conv2DTranspose
from keras.layers import (Conv2D, MaxPooling2D, Dropout, concatenate,
                          Conv2DTranspose, BatchNormalization, Activation)
import os
import numpy as np
import tensorflow as tf
from keras import Input
from keras.layers import Conv2D, MaxPooling2D, Dropout, concatenate, Conv2DTranspose
from keras.models import Model
from tensorflow.keras.optimizers import Adam


def enhancednet(pretrained_weights=None):
    input_shape = (None, None, 1)
    inputs = Input(shape=input_shape, name='input_img')
    conv1 = Conv2D(16, 5, activation='relu', padding='same')(inputs)
    conv1 = BatchNormalization()(conv1)
    conv1 = Activation('relu')(conv1)
    drop1 = Dropout(0.3)(conv1)

    pool1 = MaxPooling2D(pool_size=(2, 2))(drop1)

    conv2 = Conv2D(24, 5, activation='relu', padding='same')(pool1)
    conv2 = BatchNormalization()(conv2)
    conv2 = Activation('relu')(conv2)
    drop2 = Dropout(0.3)(conv2)

    pool2 = MaxPooling2D(pool_size=(2, 2))(drop2)

    conv3 = Conv2D(32, 5, activation='relu', padding='same')(pool2)
    conv3 = BatchNormalization()(conv3)
    conv3 = Activation('relu')(conv3)
    drop3 = Dropout(0.3)(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(drop3)

    conv4 = Conv2D(40, 5, activation='relu', padding='same')(pool3)
    conv4 = BatchNormalization()(conv4)
    conv4 = Activation('relu')(conv4)
    drop4 = Dropout(0.3)(conv4)

    up5 = Conv2D(32, 3, activation='relu', padding='same')(
        Conv2DTranspose(32, 5, activation='relu', padding="same", strides=2)(drop4))
    merge5 = concatenate([drop3, up5], axis=3)
    conv5 = Conv2D(32, 5, activation='relu', padding='same')(merge5)
    drop5 = Dropout(0.6)(conv5)

    up6 = Conv2D(24, 3, activation='relu', padding='same')(
        Conv2DTranspose(24, 5, activation='relu', padding="same", strides=2)(drop5))
    merge6 = concatenate([drop2, up6], axis=3)
    conv6 = Conv2D(24, 5, activation='relu', padding='same')(merge6)
    drop6 = Dropout(0.6)(conv6)

    up7 = Conv2D(16, 3, activation='relu', padding='same')(
        Conv2DTranspose(16, 5, activation='relu', padding="same", strides=2)(drop6))
    merge7 = concatenate([drop1, up7], axis=3)
    conv7 = Conv2D(16, 5, activation='relu', padding='same')(merge7)
    drop7 = Dropout(0.6)(conv7)
    conv8 = Conv2D(1, 1, activation='relu')(drop7)

    model = Model(inputs=inputs, outputs=conv8)

    opt = Adam()

    model.compile(optimizer=opt, loss='mse', metrics=['accuracy'])

    if pretrained_weights:
        model.load_weights(pretrained_weights)

    return model

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

06-27 18:02:28.505 16829 16829 F DEBUG : *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 06-27 18:02:28.505 16829 16829 F DEBUG : Build fingerprint: 'rockchip/rk3568_s/rk3568_s:12/SP1A.210812.016/GPD40-V1.0.0.0-20241022:userdebug/release-keys' 06-27 18:02:28.505 16829 16829 F DEBUG : Revision: '0' 06-27 18:02:28.505 16829 16829 F DEBUG : ABI: 'arm64' 06-27 18:02:28.505 16829 16829 F DEBUG : Timestamp: 2025-06-27 18:02:28.030811844+0800 06-27 18:02:28.505 16829 16829 F DEBUG : Process uptime: 5s 06-27 18:02:28.505 16829 16829 F DEBUG : Cmdline: com.example.simplecarmer 06-27 18:02:28.505 16829 16829 F DEBUG : pid: 29250, tid: 16817, name: camera-17510185 >>> com.example.simplecarmer <<< 06-27 18:02:28.505 16829 16829 F DEBUG : uid: 10088 06-27 18:02:28.506 16829 16829 F DEBUG : signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0x7ab70b5839 06-27 18:02:28.506 16829 16829 F DEBUG : x0 0000000000000000 x1 0000000000000081 x2 0000000000000001 x3 0000000000000000 06-27 18:02:28.506 16829 16829 F DEBUG : x4 0000000000000000 x5 0000000000000000 x6 0000000000000000 x7 efc4508cc88f5c39 06-27 18:02:28.506 16829 16829 F DEBUG : x8 0000000000000000 x9 0000000000000bf4 x10 000000000000001a x11 00000000bdc18adf 06-27 18:02:28.506 16829 16829 F DEBUG : x12 0000000000000059 x13 e839a4c0514732d0 x14 0000000000000000 x15 0000000000000bf4 06-27 18:02:28.506 16829 16829 F DEBUG : x16 0000007ac1d040a8 x17 0000007ac1c91080 x18 000000778e86a000 x19 00000078fb410ff0 06-27 18:02:28.506 16829 16829 F DEBUG : x20 00000078fb416820 x21 00000078fb416848 x22 00000078aae9ccd0 x23 000000000000000c 06-27 18:02:28.506 16829 16829 F DEBUG : x24 0000000000000001 x25 00000078fb416770 x26 000000000000001a x27 00000078fb411168 06-27 18:02:28.506 16829 16829 F DEBUG : x28 0000007ab70b5838 x29 0000007804c549d0 06-27 18:02:28.506 16829 16829 F DEBUG : lr 0000007803dba34c sp 0000007804c54960 pc 0000007803dba1f0 pst 0000000080001000 06-27 18:02:28.506 16829 16829 F DEBUG : backtrace: 06-27 18:02:28.506 16829 16829 F DEBUG : #00 pc 00000000000131f0 /data/app/~~LJnE-Ul_cPhlbUVepoVy3Q==/com.example.simplecarmer-yRygedmAHCjilzyQDaCAog==/lib/arm64/libuvc.so (BuildId: ecfb28a6291beb57fec7298797d8213c772ae2c1) 06-27 18:02:28.506 16829 16829 F DEBUG : #01 pc 000000000000c99c /data/app/~~LJnE-Ul_cPhlbUVepoVy3Q==/com.example.simplecarmer-yRygedmAHCjilzyQDaCAog==/lib/arm64/libusb100.so (usbi_handle_transfer_completion+332) (BuildId: 0a3128b26d7b110d699b38305536ccf99ac8ea1b) 06-27 18:02:28.506 16829 16829 F DEBUG : #02 pc 0000000000011efc /data/app/~~LJnE-Ul_cPhlbUVepoVy3Q==/com.example.simplecarmer-yRygedmAHCjilzyQDaCAog==/lib/arm64/libusb100.so (BuildId: 0a3128b26d7b110d699b38305536ccf99ac8ea1b) 06-27 18:02:28.506 16829 16829 F DEBUG : #03 pc 000000000000d618 /data/app/~~LJnE-Ul_cPhlbUVepoVy3Q==/com.example.simplecarmer-yRygedmAHCjilzyQDaCAog==/lib/arm64/libusb100.so (BuildId: 0a3128b26d7b110d699b38305536ccf99ac8ea1b) 06-27 18:02:28.506 16829 16829 F DEBUG : #04 pc 000000000000d060 /data/app/~~LJnE-Ul_cPhlbUVepoVy3Q==/com.example.simplecarmer-yRygedmAHCjilzyQDaCAog==/lib/arm64/libusb100.so (libusb_handle_events_timeout_completed+600) (BuildId: 0a3128b26d7b110d699b38305536ccf99ac8ea1b) 06-27 18:02:28.506 16829 16829 F DEBUG : #05 pc 000000000000d774 /data/app/~~LJnE-Ul_cPhlbUVepoVy3Q==/com.example.simplecarmer-yRygedmAHCjilzyQDaCAog==/lib/arm64/libusb100.so (libusb_handle_events+32) (BuildId: 0a3128b26d7b110d699b38305536ccf99ac8ea1b) 06-27 18:02:28.506 16829 16829 F DEBUG : #06 pc 000000000001155c /data/app/~~LJnE-Ul_cPhlbUVepoVy3Q==/com.example.simplecarmer-yRygedmAHCjilzyQDaCAog==/lib/arm64/libuvc.so (_uvc_handle_events+132) (BuildId: ecfb28a6291beb57fec7298797d8213c772ae2c1) 06-27 18:02:28.506 16829 16829 F DEBUG : #07 pc 00000000000b1690 /apex/com.android.runtime/lib64/bionic/libc.so (__pthread_start(void*)+204) (BuildId: 28943f8bb3b7b23557619af9a38223c5) 06-27 18:02:28.506 16829 16829 F DEBUG : #08 pc 00000000000510ac /apex/com.android.runtime/lib64/bionic/libc.so (__start_thread+64) (BuildId: 28943f8bb3b7b23557619af9a38223c5) 06-27 18:02:28.579 210 210 E tombstoned: Tombstone written to: tombstone_13
06-28
<think>好的,用户现在需要切换到easymesh子模块中的R3R4_20240222_dvp分支。之前的问题是关于如何正确初始化和更新子模块,现在用户已经进入子模块的目录,并且查看了远程分支的情况。用户给出的命令是查看远程分支,然后需要切换到特定分支。 首先,我需要确认用户当前所在的目录是easymesh子模块的内部,因为路径显示是在Iplatform/packages/submodules/easymesh$。这时候用户需要切换到该子模块的特定分支。 通常,切换分支的命令是git checkout加上分支名。但这里需要注意,远程分支可能需要先fetch,然后创建本地分支跟踪远程分支。不过,用户可能已经通过之前的git submodule update拉取了所有分支的信息,所以可以直接切换。 用户可能已经运行了git submodule update,这会拉取子模块的内容,但默认可能只检出主分支。要切换到其他分支,需要进入子模块目录,然后使用git checkout对应的远程分支。例如,git checkout R3R4_20240222_dvp会自动跟踪origin/R3R4_20240222_dvp。 另外,用户可能需要确认是否已经获取了所有分支的信息。如果之前没有fetch,可能需要先运行git fetch origin。不过,在子模块的初始化和更新过程中,可能已经完成了这一操作。 所以,正确的步骤应该是进入子模块目录,然后直接切换分支。如果有问题可能需要先fetch,但根据用户提供的远程分支列表,分支已经存在,所以直接切换即可。 还需要提醒用户,如果主仓库的提交指向了子模块的某个特定提交,切换分支可能会导致子模块的状态与主仓库的记录不一致,需要注意同步问题。但用户可能已经了解这一点,所以简要说明即可。 最后,给出具体的命令步骤,并确保符合用户使用的示例格式,包括代码块和相关问题。</think>```bash # 1. 进入子模块目录(已在此路径) cd Iplatform/packages/submodules/easymesh # 2. 检出指定分支(自动关联远程跟踪分支) git checkout R3R4_20240222_dvp # 3. 验证当前分支状态(可选) git status # 预期输出:On branch R3R4_20240222_dvp ``` ### 关键说明 1. **自动跟踪远程分支** 直接使用 `git checkout R3R4_20240222_dvp` 会自动关联远程分支 `origin/R3R4_20240222_dvp`,无需手动创建本地分支。 2. **子模块分支切换的注意事项** - 切换分支后,主仓库的提交记录中记录的子模块提交哈希可能与当前分支不一致,需通过 `git submodule update --remote` 同步(详见相关问题4)。 - 如果子模块分支用于生产环境,建议通过 `git submodule update --remote --merge` 保持与远程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值