C语言中Stastic变量

本文详细解释了静态变量在函数内外的应用方式及其作用。对于函数内的静态变量,即便函数多次被调用,其值也会被持久保留;对于函数外的静态变量,则可以避免不同源文件间的变量名冲突。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 函数内部变量,让一个变量长期有效,而不管其是在什么地方被申明。比如:

          int fun1()

          {

              static int s_value = 0;

          s_value++;

          }

         那么fun1不管在什么地方被调用,当函数退出后,s_value最后的值将一直会被系统保存(相当于一个全局变量),下次s_value再被用到时,也即当fun1()再次被调用时,s_value初始值将是最近被保存过的值(请注意s_value初始化操作只会被执行一次,即上述s_value =0 这个语句)。

2.函数外部变量,避免多个文件使用了相同的变量名而导致冲突

 比如有多个文件,分别由几个人独立开发的。假定他们在各自的文件中定义相同的“全局”变量名(仅仅指在他们独自的文件中全局),当系统集成时,由于他们使用了名字一样的“全局”变量,导致有难于遇见的问题。解决这个问题方便的做法就是在各自文件中,在相同的全局变量申明前加上static修饰符。这样系统就会为他们分配不同的内存,互不影响了。

3.static函数

  与第二条类似。

### Statistics in IT or Programming In the context of IT and programming, statistics plays a crucial role in various areas such as data analysis, machine learning, performance optimization, and more. Below is an exploration of how statistics is applied in these domains. #### Application in Machine Learning Statistics forms the backbone of many machine learning algorithms. For instance, during the post-training quantization process, statistical methods are employed to optimize model performance without overfitting. This involves using an unlabeled calibration set to extract internal network statistics, which subsequently guide the setting of quantization parameters[^3]. These statistics ensure that the model's behavior remains consistent across different datasets while minimizing computational overhead. #### Performance Analysis and Optimization Another significant application of statistics in IT relates to system performance analysis. In distributed systems, understanding CPU usage patterns and I/O blocking behaviors is essential for optimizing resource allocation. For example, when service A calls service B, service A often enters an idle state waiting for a response from service B. During this period, the CPU cycles allocated to service A remain underutilized due to I/O blocking[^2]. Statistical models can help quantify this inefficiency and propose strategies like asynchronous processing or multithreading to enhance overall throughput. #### Data Analysis and Visualization Statistics also underpins data analysis and visualization techniques widely used in programming. Functional programming paradigms, which emphasize immutability and pure functions, align well with statistical computations. Peer-reviewed publications in venues like the International Conference on Functional Programming discuss advanced methodologies for leveraging functional programming constructs to perform complex statistical analyses efficiently[^1]. ```python import numpy as np import matplotlib.pyplot as plt # Example: Generating random data and visualizing its distribution data = np.random.normal(loc=0.0, scale=1.0, size=1000) plt.hist(data, bins=30, alpha=0.75, color='blue', edgecolor='black') plt.title('Normal Distribution') plt.xlabel('Value') plt.ylabel('Frequency') plt.show() ``` The above code demonstrates how Python libraries such as NumPy and Matplotlib facilitate statistical analysis and visualization, enabling programmers to gain insights into their data effectively. #### Conclusion Statistics permeates numerous aspects of IT and programming, offering indispensable tools for improving system efficiency, enhancing machine learning models, and deriving meaningful conclusions from data. By integrating statistical approaches into software development practices, developers can build more robust and efficient applications.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值