Metaclass in Python

  I pick this post from stackoverflow, it's really awesome, thanks for e-satis .

  Here is the original link : http://stackoverflow.com/questions/100003/what-is-a-metaclass-in-python


Classes as objects

Before understanding metaclasses, you need to master classes in Python. And Python has a very peculiar idea of what classes are, borrowed from the Smalltalk language.

In most languages, classes are just pieces of code that describe how to produce an object. That's kinda true in Python too:

  >>> class ObjectCreator(object):
  ...       pass
  ... 

  >>> my_object = ObjectCreator()
  >>> print my_object
  <__main__.ObjectCreator object at 0x8974f2c>

But classes are more than that in Python. Classes are objects too.

Yes, objects.

As soon as you use the keyword class, Python executes it and creates an OBJECT. The instruction

  >>> class ObjectCreator(object):
  ...       pass
  ... 

creates in memory an object with the name ObjectCreator.

This object (the class) is itself capable of creating objects (the instances), and this is why it's a class.

But still, it's an object, and therefore:

  • you can assign it to a variable
  • you can copy it
  • you can add attributes to it
  • you can pass it as a function parameter

e.g.:

  >>> print ObjectCreator # you can print a class because it's an object
  <class '__main__.ObjectCreator'>
  >>> def echo(o):
  ...       print o
  ... 
  >>> echo(ObjectCreator) # you can pass a class as a parameter
  <class '__main__.ObjectCreator'>
  >>> print hasattr(ObjectCreator, 'new_attribute')
  False
  >>> ObjectCreator.new_attribute = 'foo' # you can add attributes to a class
  >>> print hasattr(ObjectCreator, 'new_attribute')
  True
  >>> print ObjectCreator.new_attribute
  foo
  >>> ObjectCreatorMirror = ObjectCreator # you can assign a class to a variable
  >>> print ObjectCreatorMirror.new_attribute
  foo
  >>> print ObjectCreatorMirror()
  <__main__.ObjectCreator object at 0x8997b4c>

Creating classes dynamically

Since classes are objects, you can create them on the fly, like any object.

First, you can create a class in a function using class:

  >>> def choose_class(name):
  ...     if name == 'foo':
  ...         class Foo(object):
  ...             pass
  ...         return Foo # return the class, not an instance
  ...     else:
  ...         class Bar(object):
  ...             pass
  ...         return Bar
  ...     
  >>> MyClass = choose_class('foo') 
  >>> print MyClass # the function returns a class, not an instance
  <class '__main__.Foo'>
  >>> print MyClass() # you can create an object from this class
  <__main__.Foo object at 0x89c6d4c>

But it's not so dynamic, since you still have to write the whole class yourself.

Since classes are objects, they must be generated by something.

When you use the class keyword, Python creates this object automatically. But as with most things in Python, it gives you a way to do it manually.

Remember the function type? The good old function that lets you know what type an object is:

>>> print type(1)
<type 'int'>
>>> print type("1")
<type 'str'>
>>> print type(ObjectCreator)
<type 'type'>
>>> print type(ObjectCreator())
<class '__main__.ObjectCreator'>

Well, type has a completely different ability, it can also create classes on the fly. type can take the description of a class as parameters, and return a class.

(I know, it's silly that the same function can have two completely different uses according to the parameters you pass to it. It's an issue due to backwards compatibility in Python)

type works this way:

  type(name of the class, 
       tuple of the parent class (for inheritance, can be empty), 
       dictionary containing attributes names and values)

e.g.:

>>> class MyShinyClass(object):
...       pass

can be created manually this way:

  >>> MyShinyClass = type('MyShinyClass', (), {}) # returns a class object
  >>> print MyShinyClass
  <class '__main__.MyShinyClass'>
  >>> print MyShinyClass() # create an instance with the class
  <__main__.MyShinyClass object at 0x8997cec>

You'll notice that we use "MyShinyClass" as the name of the class and as the variable to hold the class reference. They can be different, but there is no reason to complicate things.

type accepts a dictionary to define the attributes of the class. So:

>>> class Foo(object):
...       bar = True

Can be translated to:

  >>> Foo = type('Foo', (), {'bar':True})

And used as a normal class:

  >>> print Foo
  <class '__main__.Foo'>
  >>> print Foo.bar
  True
  >>> f = Foo()
  >>> print f
  <__main__.Foo object at 0x8a9b84c>
  >>> print f.bar
  True

And of course, you can inherit from it, so:

  >>>   class FooChild(Foo):
  ...         pass

would be:

  >>> FooChild = type('FooChild', (Foo,), {})
  >>> print FooChild
  <class '__main__.FooChild'>
  >>> print FooChild.bar # bar is inherited from Foo
  True

Eventually you'll want to add methods to your class. Just define a function with the proper signature and assign it as an attribute.

>>> def echo_bar(self):
...       print self.bar
... 
>>> FooChild = type('FooChild', (Foo,), {'echo_bar': echo_bar})
>>> hasattr(Foo, 'echo_bar')
False
>>> hasattr(FooChild, 'echo_bar')
True
>>> my_foo = FooChild()
>>> my_foo.echo_bar()
True

You see where we are going: in Python, classes are objects, and you can create a class on the fly, dynamically.

This is what Python does when you use the keyword class, and it does so by using a metaclass.

What are metaclasses (finally)

Metaclasses are the 'stuff' that creates classes.

You define classes in order to create objects, right?

But we learned that Python classes are objects.

Well, metaclasses are what create these objects. They are the classes' classes, you can picture them this way:

  MyClass = MetaClass()
  MyObject = MyClass()

You've seen that type lets you do something like this:

  MyClass = type('MyClass', (), {})

It's because the function type is in fact a metaclass. type is the metaclass Python uses to create all classes behind the scenes.

Now you wonder why the heck is it written in lowercase, and not Type?

Well, I guess it's a matter of consistency with str, the class that creates strings objects, and int the class that creates integer objects. type is just the class that creates class objects.

You see that by checking the __class__ attribute.

Everything, and I mean everything, is an object in Python. That includes ints, strings, functions and classes. All of them are objects. And all of them have been created from a class:

  >>> age = 35
  >>> age.__class__
  <type 'int'>
  >>> name = 'bob'
  >>> name.__class__
  <type 'str'>
  >>> def foo(): pass
  >>> foo.__class__
  <type 'function'>
  >>> class Bar(object): pass
  >>> b = Bar()
  >>> b.__class__
  <class '__main__.Bar'>

Now, what is the __class__ of any __class__ ?

  >>> age.__class__.__class__
  <type 'type'>
  >>> name.__class__.__class__
  <type 'type'>
  >>> foo.__class__.__class__
  <type 'type'>
  >>> b.__class__.__class__
  <type 'type'>

So, a metaclass is just the stuff that creates class objects.

You can call it a 'class factory' if you wish.

type is the built-in metaclass Python uses, but of course, you can create your own metaclass.

The __metaclass__ attribute

You can add a __metaclass__ attribute when you write a class:

class Foo(object):
  __metaclass__ = something...
  [...]

If you do so, Python will use the metaclass to create the class Foo.

Careful, it's tricky.

You write class Foo(object) first, but the class object Foo is not created in memory yet.

Python will look for __metaclass__ in the class definition. If it finds it, it will use it to create the object class Foo. If it doesn't, it will use type to create the class.

Read that several times.

When you do:

class Foo(Bar):
  pass

Python does the following:

Is there a __metaclass__ attribute in Foo?

If yes, create in memory a class object (I said a class object, stay with me here), with the name Foo by using what is in __metaclass__.

If Python can't find __metaclass__, it will look for a __metaclass__ in Bar (the parent class), and try to do the same.

If Python can't find __metaclass__ in any parent, it will look for a __metaclass__ at the MODULE level, and try to do the same.

Then if it can't find any __metaclass__ at all, it will use type to create the class object.

Now the big question is, what can you put in __metaclass__ ?

The answer is: something that can create a class.

And what can create a class? type, or anything that subclasses or uses it.

Custom metaclasses

The main purpose of a metaclass is to change the class automatically, when it's created.

You usually do this for APIs, where you want to create classes matching the current context.

Imagine a stupid example, where you decide that all classes in your module should have their attributes written in uppercase. There are several ways to do this, but one way is to set __metaclass__ at the module level.

This way, all classes of this module will be created using this metaclass, and we just have to tell the metaclass to turn all attributes to uppercase.

Luckily, __metaclass__ can actually be any callable, it doesn't need to be a formal class (I know, something with 'class' in its name doesn't need to be a class, go figure... but it's helpful).

So we will start with a simple example, by using a function.

# the metaclass will automatically get passed the same argument
# that you usually pass to `type`
def upper_attr(future_class_name, future_class_parents, future_class_attr):
  """
    Return a class object, with the list of its attribute turned 
    into uppercase.
  """

  # pick up any attribute that doesn't start with '__' and uppercase it
  uppercase_attr = {}
  for name, val in future_class_attr.items():
      if not name.startswith('__'):
          uppercase_attr[name.upper()] = val
      else:
          uppercase_attr[name] = val

  # let `type` do the class creation
  return type(future_class_name, future_class_parents, uppercase_attr)

__metaclass__ = upper_attr # this will affect all classes in the module

class Foo(): # global __metaclass__ won't work with "object" though
  # but we can define __metaclass__ here instead to affect only this class
  # and this will work with "object" children
  bar = 'bip'

print hasattr(Foo, 'bar')
# Out: False
print hasattr(Foo, 'BAR')
# Out: True

f = Foo()
print f.BAR
# Out: 'bip'

Now, let's do exactly the same, but using a real class for a metaclass:

# remember that `type` is actually a class like `str` and `int`
# so you can inherit from it
class UpperAttrMetaclass(type): 
    # __new__ is the method called before __init__
    # it's the method that creates the object and returns it
    # while __init__ just initializes the object passed as parameter
    # you rarely use __new__, except when you want to control how the object
    # is created.
    # here the created object is the class, and we want to customize it
    # so we override __new__
    # you can do some stuff in __init__ too if you wish
    # some advanced use involves overriding __call__ as well, but we won't
    # see this
    def __new__(upperattr_metaclass, future_class_name, 
                future_class_parents, future_class_attr):

        uppercase_attr = {}
        for name, val in future_class_attr.items():
            if not name.startswith('__'):
                uppercase_attr[name.upper()] = val
            else:
                uppercase_attr[name] = val

        return type(future_class_name, future_class_parents, uppercase_attr)

But this is not really OOP. We call type directly and we don't override call the parent __new__. Let's do it:

class UpperAttrMetaclass(type): 

    def __new__(upperattr_metaclass, future_class_name, 
                future_class_parents, future_class_attr):

        uppercase_attr = {}
        for name, val in future_class_attr.items():
            if not name.startswith('__'):
                uppercase_attr[name.upper()] = val
            else:
                uppercase_attr[name] = val

        # reuse the type.__new__ method
        # this is basic OOP, nothing magic in there
        return type.__new__(upperattr_metaclass, future_class_name, 
                            future_class_parents, uppercase_attr)

You may have noticed the extra argument upperattr_metaclass. There is nothing special about it: a method always receives the current instance as first parameter. Just like you have self for ordinary methods.

Of course, the names I used here are long for the sake of clarity, but like for self, all the arguments have conventional names. So a real production metaclass would look like this:

class UpperAttrMetaclass(type): 

    def __new__(cls, clsname, bases, dct):

        uppercase_attr = {}
        for name, val in dct.items():
            if not name.startswith('__'):
                uppercase_attr[name.upper()] = val
            else:
                uppercase_attr[name] = val

        return type.__new__(cls, clsname, bases, uppercase_attr)

We can make it even cleaner by using super, which will ease inheritance (because yes, you can have metaclasses, inheriting from metaclasses, inheriting from type):

class UpperAttrMetaclass(type): 

    def __new__(cls, clsname, bases, dct):

        uppercase_attr = {}
        for name, val in dct.items():
            if not name.startswith('__'):
                uppercase_attr[name.upper()] = val
            else:
                uppercase_attr[name] = val

        return super(UpperAttrMetaclass, cls).__new__(cls, clsname, bases, uppercase_attr)

That's it. There is really nothing more about metaclasses.

The reason behind the complexity of the code using metaclasses is not because of metaclasses, it's because you usually use metaclasses to do twisted stuff relying on introspection, manipulating inheritance, vars such as __dict__, etc.

Indeed, metaclasses are especially useful to do black magic, and therefore complicated stuff. But by themselves, they are simple:

  • intercept a class creation
  • modify the class
  • return the modified class

Why would you use metaclasses classes instead of functions?

Since __metaclass__ can accept any callable, why would you use a class since it's obviously more complicated?

There are several reasons to do so:

  • The intention is clear. When you read UpperAttrMetaclass(type), you know what's going to follow
  • You can use OOP. Metaclass can inherit from metaclass, override parent methods. Metaclasses can even use metaclasses.
  • You can structure your code better. You never use metaclasses for something as trivial as the above example. It's usually for something complicated. Having the ability to make several methods and group them in one class is very useful to make the code easier to read.
  • You can hook on __new____init__ and __call__. Which will allow you to do different stuff. Even if usually you can do it all in __new__, some people are just more comfortable using__init__.
  • These are called metaclasses, damn it! It must mean something!

Why the hell would you use metaclasses?

Now the big question. Why would you use some obscure error prone feature?

Well, usually you don't:

Metaclasses are deeper magic than 99% of users should ever worry about. If you wonder whether you need them, you don't (the people who actually need them know with certainty that they need them, and don't need an explanation about why).

Python Guru Tim Peters

The main use case for a metaclass is creating an API. A typical example of this is the Django ORM.

It allows you to define something like this:

  class Person(models.Model):
    name = models.CharField(max_length=30)
    age = models.IntegerField()

But if you do this:

  guy = Person(name='bob', age='35')
  print guy.age

It won't return an IntegerField object. It will return an int, and can even take it directly from the database.

This is possible because models.Model defines __metaclass__ and it uses some magic that will turn the Person you just defined with simple statements into a complex hook to a database field.

Django makes something complex look simple by exposing a simple API and using metaclasses, recreating code from this API to do the real job behind the scenes.

The last word

First, you know that classes are objects that can create instances.

Well in fact, classes are themselves instances. Of metaclasses.

  >>> class Foo(object): pass
  >>> id(Foo)
  142630324

Everything is an object in Python, and they are all either instances of classes or instances of metaclasses.

Except for type.

type is actually its own metaclass. This is not something you could reproduce in pure Python, and is done by cheating a little bit at the implementation level.

Secondly, metaclasses are complicated. You may not want to use them for very simple class alterations. You can change classes by using two different techniques:

  • monkey patching
  • class decorators

99% of the time you need class alteration, you are better off using these.

But 99% of the time, you don't need class alteration at all :-)


内容概要:本文深入探讨了金属氢化物(MH)储氢系统在燃料电池汽车中的应用,通过建立吸收/释放氢气的动态模型和热交换模型,结合实验测试分析了不同反应条件下的性能表现。研究表明,低温环境有利于氢气吸收,高温则促进氢气释放;提高氢气流速和降低储氢材料体积分数能提升系统效率。论文还详细介绍了换热系统结构、动态性能数学模型、吸放氢特性仿真分析、热交换系统优化设计、系统控制策略优化以及工程验证与误差分析。此外,通过三维动态建模、换热结构对比分析、系统级性能优化等手段,进一步验证了金属氢化物储氢系统的关键性能特征,并提出了具体的优化设计方案。 适用人群:从事氢能技术研发的科研人员、工程师及相关领域的研究生。 使用场景及目标:①为储氢罐热管理设计提供理论依据;②推动车载储氢技术的发展;③为金属氢化物储氢系统的工程应用提供量化依据;④优化储氢系统的操作参数和结构设计。 其他说明:该研究不仅通过建模仿真全面验证了论文实验结论,还提出了具体的操作参数优化建议,如吸氢阶段维持25-30°C,氢气流速0.012g/s;放氢阶段快速升温至70-75°C,水速18-20g/min。同时,文章还强调了安全考虑,如最高工作压力限制在5bar以下,温度传感器冗余设计等。未来的研究方向包括多尺度建模、新型换热结构和智能控制等方面。
<think>我们正在讨论Python中的元类(Metaclass)。元类是类的类,用于创建类。在Python中,类本身也是对象,它们是元类的实例。默认情况下,大多数类的元类是`type`。 元类允许我们自定义类的创建过程。我们可以通过定义一个继承自`type`的元类,并重写`__new__`或`__init__`方法来干预类的创建,从而添加一些额外的功能或修改类的属性。 一个简单的元类示例: ```python class Meta(type): def __new__(cls, name, bases, dct): # 在创建类之前可以做一些操作 dct['added_by_meta'] = "Hello from Meta!" return super().__new__(cls, name, bases, dct) class MyClass(metaclass=Meta): pass obj = MyClass() print(obj.added_by_meta) # 输出: Hello from Meta! ``` 在这个例子中,`Meta`是一个元类,它继承自`type`。当创建`MyClass`时,元类的`__new__`方法被调用,我们向类的字典中添加了一个新的属性,因此所有由这个类创建的对象都会有这个属性。 元类的一个常见用途是创建API时强制某些约束,比如确保所有的方法都有文档字符串,或者自动注册子类等。 注意:元类是高级特性,通常只在复杂场景下使用,比如框架开发。在普通应用开发中,应尽量避免使用元类,而使用更简单的替代方案(如装饰器或类装饰器)。 §§相关问题§§ 1. 元类与类装饰器有什么区别和各自的适用场景? 2. 如何理解`type`是Python中的内置元类? 3. 在元类的`__new__`方法中,参数`name`、`bases`、`dct`分别代表什么? 4. 元类在哪些实际项目或框架中被广泛使用? 5. 使用元类可能带来哪些潜在问题?</think>### Python Metaclass 解说 元类(Metaclass)是 Python 中创建类的类,可理解为"类的模板"。所有类(包括内置类型)都是元类的实例,默认元类是 `type`。元类允许在类创建时动态修改类定义,常用于实现高级设计模式。 #### 核心特性: 1. **继承关系** - 所有类继承自 `object` - 所有元类继承自 `type` ```python class Meta(type): ... # 自定义元类 class MyClass(metaclass=Meta): ... # 使用元类 ``` 2. **创建过程** 类创建时调用元类的 `__new__` 和 `__init__`: ```python class Meta(type): def __new__(cls, name, bases, dct): # 控制类创建逻辑 dct["version"] = 1.0 # 动态添加属性 return super().__new__(cls, name, bases, dct) ``` 3. **典型应用场景**: - **自动注册子类**(如 ORM 框架): ```python class PluginMeta(type): registry = {} def __init__(cls, name, bases, dct): if name != "BasePlugin": PluginMeta.registry[name] = cls ``` - **强制接口约束**: ```python class InterfaceMeta(type): def __init__(cls, name, bases, dct): if "execute" not in dct: raise TypeError("必须实现 execute() 方法") ``` - **单例模式**: ```python class SingletonMeta(type): _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: cls._instances[cls] = super().__call__(*args, **kwargs) return cls._instances[cls] ``` #### 注意事项: - 优先使用类装饰器替代简单需求 - 深度继承链可能增加调试难度 - 主要应用于框架开发(如 Django ORM、SQLAlchemy)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值