
题意为在三维空间中有多条线段,其端点在给定的长方体上,求与坐标轴垂直的平面最多能和多
少线段相交。
以与x轴垂直的平面为例(y,z轴同理),对于一个线段能被平面切断时,平面位于x1与x2之间。
由此问题转化为给定n条线段,求最多有多少线段覆盖同一位置。
考虑差分,求前缀和即可
因为n<=1e5,a,c,b <=1e9,所以要将线段离散化。
AC代码
#include<bits/stdc++.h>
using namespace std;
#define int long long
struct pa {
int l, r;
};
int findi(int x, vector<int>& a) {
int l = -1, r = a.size();
while (l + 1 < r) {
int mid = l + ((r - l) >> 1);
if (a[mid] >= x)r = mid;
else l = mid;
}
return r + 1;
}
const int N = 3e5;
void solve()
{
int n, a1, b1, c1;
cin >> n >> a1 >> b1 >> c1;
int x1, y1, z1, x2, y2, z2;
// vector<int>a(a1 + 3);
// vector<int>b(b1 + 3);
// vector<int>c(c1 + 3);
vector<pa>a, b, c;
vector<int>ita, itb, itc;
int ina[N] = { 0 }, inb[N] = { 0 }, inc[N] = {0};
//vector<int>ina(n+1), inb(n+1), inc(n+1);//差分数组
for (int i = 0; i < n; i++) {
cin >> x1 >> y1 >> z1 >> x2 >> y2 >> z2;
if (x1 > x2) swap(x1, x2);
if (y1 > y2) swap(y1, y2);
if (z1 > z2) swap(z1, z2);
ita.push_back(x1), ita.push_back(x2);
itb.push_back(y1), itb.push_back(y2);
itc.push_back(z1), itc.push_back(z2);
// a[x1]++, a[x2 + 1]--;
// b[y1]++, b[y2 + 1]--;
// c[z1]++, c[z2 + 1]--;
a.push_back({ x1,x2 });
b.push_back({ y1,y2 });
c.push_back({ z1,z2 });
}
sort(ita.begin(), ita.end());
sort(itb.begin(), itb.end());
sort(itc.begin(), itc.end());
ita.erase(unique(ita.begin(), ita.end()), ita.end());
itb.erase(unique(itb.begin(), itb.end()), itb.end());
itc.erase(unique(itc.begin(), itc.end()), itc.end());
for (auto it : a) {
int x = findi(it.l, ita);
int y = findi(it.r, ita);
ina[x]++, ina[y + 1]--;
}
for (auto it : b) {
int x = findi(it.l, itb);
int y = findi(it.r, itb);
inb[x]++, inb[y + 1]--;
}
for (auto it : c) {
int x = findi(it.l, itc);
int y = findi(it.r, itc);
inc[x]++, inc[y + 1]--;
}
int sum = 0;
for (int i = 1; i <= ita.size(); i++) {
ina[i] += ina[i - 1];
sum = max(sum, ina[i]);
}
for (int i = 1; i <= itb.size(); i++) {
inb[i] += inb[i - 1];
sum = max(sum, inb[i]);
}
for (int i = 1; i <= itc.size(); i++) {
inc[i] += inc[i - 1];
sum = max(sum, inc[i]);
}
cout << sum;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
int t = 1;
// cin>>t;
while (t--) solve();
return 0;
}
1831

被折叠的 条评论
为什么被折叠?



