There are N children standing in a line. Each child is assigned a rating value.
You are giving candies to these children subjected to the following requirements:
- Each child must have at least one candy.
- Children with a higher rating get more candies than their neighbors.
What is the minimum candies you must give?
这道题用到的思路和Trapping
Rain Water是一样的,用动态规划。基本思路就是进行两次扫描,一次从左往右,一次从右往左。第一次扫描的时候维护对于每一个小孩左边所需要最少的糖果数量,存入数组对应元素中,第二次扫描的时候维护右边所需的最少糖果数,并且比较将左边和右边大的糖果数量存入结果数组对应元素中。这样两遍扫描之后就可以得到每一个所需要的最最少糖果量,从而累加得出结果。方法只需要两次扫描,所以时间复杂度是O(2*n)=O(n)。空间上需要一个长度为n的数组,复杂度是O(n)。代码如下:
int candy(vector<int> &ratings)
{
vector<int> candy(ratings.size(),1);
int sum,i;
for(i=1;i<ratings.size();i++)
{
if(ratings[i] > ratings[i-1])
candy[i] = candy[i-1]+1;
}
sum = candy[ratings.size()-1];
for(i=ratings.size()-2;i>=0;i--)
{
int cur =1;
if(ratings[i] > ratings[i+1])
cur = candy[i+1]+1;
sum += max(cur,candy[i]);
candy[i] = cur;
}
}
如果上面的那个不好理解,看下面的代码
int candy(vector<int> &ratings)
{
vector<int> candy(ratings.size(),1);
int sum,i;
for(i=1;i<ratings.size();i++)
{
if(ratings[i] > ratings[i-1])
candy[i] = candy[i-1]+1;
}
sum = candy[ratings.size()-1];
for(i=ratings.size()-2;i>=0;i--)
{
int cur =1;
if(ratings[i] > ratings[i+1] && candy[i] < candy[i+1])
candy[i] = candy[i+1]+1;
sum += candy[i];
}
return sum;
}
相当于左右开弓,分别计算最小值,然后就可以了,但是需要注意的是
if(ratings[i] > ratings[i+1] && candy[i] < candy[i+1]) //后半部分的判断尤其重要