Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
思路:只不过与上面一个区别就是有一个障碍点,在这个障碍点上 dp[i][j] = 0;
int Unique_path(int m,int n,int first,int second)
{
vector<vector<int> > dp(m);
int i,j;
for(i=0;i<dp.size();i++)
dp[i].assign(n,0);
dp[0][0] =1;
for(i=0;i<dp.size();i++)
{
for(j=0;j<dp[0].size();j++)
{
if(i!=0 || j!=0)
{
if(i == first && j == second)
dp[i][j] =0;
else
{
if(i==0)
dp[i][j] = dp[i][j-1];
else if(j == 0)
dp[i][j] = dp[i-1][j];
else
dp[i][j] = dp[i][j-1] + dp[i-1][j];
}
}
}
}
return dp[m-1][n-1];
}
int main()
{
cout<<Unique_path(3,7,2,3)<<endl;
return 0;
}
这个题目在前面已经介绍过。