excel导入内表的长度限制的solution

探讨如何处理Excel导入内部表格时遇到的长度限制,提供解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、  'TEXT_CONVERT_XLS_TO_SAP'单元格文本不能超过256个字符 
   CALL FUNCTION 'TEXT_CONVERT_XLS_TO_SAP' 
    EXPORTING 
      i_line_header              = 'X' 
      i_tab_raw_data             = lt_raw 
      i_filename                 = p_file 
    TABLES 
      i_tab_converted_data       = it_data 
    EXCEPTIONS 
      conversion_failed          = 1 
      OTHERS                     = 2 
% 参数定义 n = 20; % 候选二级物流节点数量 m = 163; % 客户数量 d_center = [12048 3901]; % 配送中心坐标 node_capacity = 10000; % 节点容量限制 (吨) vehicle_capacity = 10; % 车辆容量 (吨) operating_cost = 400; % 节点开放成本(c0) cr1 = 300; % 车辆租赁成本 c0_cost = 200; % 车辆启动成本 c1 = 0.64; % 载重运输成本系数 max_distance = 400; % 车辆最大单程行驶距离 c2 = 1.96; % 导入数据 distance_matrix = xlsread('距离.xlsx'); data = xlsread('新建 Microsoft Excel 工作.xlsx', 'Sheet1'); % 验证数据维度 if size(data, 2) < 6 error('Excel数据必须包含至少6列:位置1-2是客户坐标,位置3-4是其他数据,位置5-6是需求量'); end % 创建正确的数据结构 customer_coords = data(:, 1:2); % 客户位置坐标 demand_data = [data(:, 5), data(:, 6)]; % 每个客户的配送量和回收量 total_demand = sum(demand_data, 2); % 客户总需求 % 创建三维数据结构:[坐标x, 坐标y, 总需求量] delivery_data = [customer_coords, total_demand]; crossOverRate = 0.8; % 交叉概率 % 生成候选节点坐标 rng(1); candidate_nodes = d_center + 20 * (rand(n, 2) - 0.5); % 遗传算法参数 pop_size = 100; max_gen = 500; mutation_rate = 0.1; elite_rate = 0.1; elite_num = round(pop_size * elite_rate); % 初始化种群 population = false(pop_size, n); for i = 1:pop_size num_nodes = randi(n); population(i, randperm(n, num_nodes)) = true; end % 遗传算法主循环 best_cost = Inf; best_solution = false(1, n); history = zeros(max_gen, 1); % 记录每代最优值 for gen = 1:max_gen % 计算适应度 fitness = arrayfun(@(i) calculate_fitness(population(i,:), distance_matrix,... delivery_data, vehicle_capacity, node_capacity, operating_cost,... cr1, c0_cost, c1, c2, max_distance, d_center, candidate_nodes), 1:pop_size); % 记录并排序适应度 [sorted_fitness, sorted_idx] = sort(fitness, 'descend'); history(gen) = -sorted_fitness(1); % 记录本代最佳成本 % 精英保留 - 直接复制最优个体到下一代 elite_pop = population(sorted_idx(1:elite_num), :); % 锦标赛选择 tournament_size = 3; % 锦标赛规模 selected_parents = tournament_selection(population, fitness, pop_size - elite_num, tournament_size); % 交叉操作 crossed_pop = crossover(selected_parents, crossOverRate); % 变异操作 mutated_pop = mutation(crossed_pop, mutation_rate); % 新种群 = 精英 + 交叉变异后的后代 population = [elite_pop; mutated_pop]; % 更新全局最优解 if -sorted_fitness(1) < best_cost best_solution = population(sorted_idx(1),:); best_cost = -sorted_fitness(1); fprintf('Generation %d, New Best Cost: %.2f\n', gen, best_cost); end % 调试输出 if mod(gen,50)==0 fprintf('Generation %d, Best Cost: %.2f\n', gen, best_cost); end end % 输出结果 % 输出结果 selected_nodes = find(best_solution); node_coords = candidate_nodes(selected_nodes, :); % 重新计算最优解的成本和客户分配 [~, ~, ~, ~, node_customers] = calculate_cost(best_solution, distance_matrix,... delivery_data, vehicle_capacity, node_capacity, operating_cost,... cr1, c0_cost, c1, c2, max_distance, d_center, candidate_nodes); % 添加d_center和candidate_nodes disp(['最优节点数量: ', num2str(length(selected_nodes))]); disp(['节点索引: ', num2str(selected_nodes(:)')]); disp(['最低成本: ', num2str(best_cost)]); disp('====== 选定节点坐标 ======'); for i = 1:length(selected_indices) coord = candidate_nodes(selected_indices(i),:); disp(['节点 ', num2str(selected_indices(i)), ' : (', ... num2str(coord(1)), ', ', num2str(coord(2)), ')']); end % 输出每个节点服务的客户 disp('====== 节点服务分配情况 ======'); for i = 1:length(selected_nodes) node_id = selected_nodes(i); num_customers = length(node_customers{i}); % 格式化客户列输出(每行最多20个客户) if num_customers == 0 disp(['节点 ' num2str(node_id) ' --> 未服务任何客户']); else customer_str = ['节点 ' num2str(node_id) ' --> 客户: ']; for j = 1:num_customers customer_str = [customer_str, num2str(node_customers{i}(j))]; if mod(j,20)==0 || j==num_customers disp(customer_str); customer_str = ' '; % 缩进换行 else customer_str = [customer_str, ', ']; end end end end function selected_pop = tournament_selection(population, fitness, num_select, tournament_size) % 输入: % population - 种群矩阵 (pop_size x chromosome_length) % fitness - 适应度向量 (1 x pop_size) % num_select - 需要选择的个体数量 % tournament_size - 锦标赛规模 % % 输出: % selected_pop - 选择出的种群子集 pop_size = size(population, 1); selected_pop = false(num_select, size(population, 2)); for i = 1:num_select % 随机选择参赛个体 contestants_idx = randperm(pop_size, tournament_size); % 找出锦标赛中适应度最高的个体 [~, best_idx] = max(fitness(contestants_idx)); % 存储获胜者 selected_pop(i, :) = population(contestants_idx(best_idx), :); end end function mutated_pop = mutation(population, rate) mutated_pop = population; for i = 1:size(population, 1) % 生成变异掩码 mutation_mask = rand(1, size(population, 2)) < rate; % 应用变异 mutated_pop(i, :) = xor(population(i, :), mutation_mask); % 确保至少有一个节点被选中 if ~any(mutated_pop(i, :)) % 随机激活一个节点 idx = randi(size(population, 2)); mutated_pop(i, idx) = true; end end end % 修改后的交叉函数 function crossed_pop = crossover(parents, crossOverRate) crossed_pop = false(size(parents)); num_parents = size(parents, 1); for i = 1:2:num_parents-1 parent1 = parents(i, :); parent2 = parents(i+1, :); if rand < crossOverRate % 单点交叉 cross_point = randi(length(parent1)-1); child1 = [parent1(1:cross_point), parent2(cross_point+1:end)]; child2 = [parent2(1:cross_point), parent1(cross_point+1:end)]; crossed_pop(i, :) = child1; crossed_pop(i+1, :) = child2; else % 保留原个体 crossed_pop(i, :) = parent1; crossed_pop(i+1, :) = parent2; end end % 处理奇数个父母的情况 if mod(num_parents, 2) == 1 crossed_pop(end, :) = parents(end, :); end end % 独立适应度计算函 function fit = calculate_fitness(solution, distance_matrix, delivery_data,... vehicle_capacity, node_capacity, operating_cost, cr1, c0_cost, c1, c2, ... max_distance, d_center, candidate_nodes) % 增加两个参数 selected_nodes = find(solution); [total_cost, ~, ~, ~, ~] = calculate_cost(solution, distance_matrix,... delivery_data, vehicle_capacity, node_capacity, operating_cost,... cr1, c0_cost, c1, c2, max_distance, d_center, candidate_nodes); % 添加两个参数 fit = -total_cost; end function fc1 = calculate_FC1(selected_nodes, node_opening_cost) % selected_nodes: 逻辑向量示被选中的节点 % node_opening_cost: 各节点的开放成本向量 fc1 = sum(node_opening_cost(selected_nodes)); end function fc2 = calculate_FC2(selected_nodes, delivery_data, vehicle_capacity,... lease_cost, startup_cost) % lease_cost: 车辆租赁成本系数 % startup_cost: 车辆启动成本系数 num_nodes = sum(selected_nodes); vehicle_counts = zeros(num_nodes,1); task_counts = zeros(num_nodes,1); % 计算每个节点的车辆需求和任务数量 for i = 1:num_nodes node_demand = sum(delivery_data(selected_nodes(i),:)); vehicle_counts(i) = ceil(node_demand / vehicle_capacity); task_counts(i) = sum(selected_nodes(i,:)) * 2; % 往返计为2个任务 end fc2 = sum(lease_cost * vehicle_counts + startup_cost * task_counts); end function fc3 = calculate_FC3(route_matrix, load_matrix, distance_matrix,... c1, c2) % route_matrix: 路径选择矩阵(0/1) % load_matrix: 载货量矩阵 [num_nodes, num_clients] = size(route_matrix); fc3 = 0; for i = 1:num_nodes for j = 1:num_clients if route_matrix(i,j) % 载货运输成本 + 空驶返回成本 fc3 = fc3 + c1 * load_matrix(i,j) * distance_matrix(i,j) + ... c2 * distance_matrix(i,j); end end end end function [total_cost, breakdown] = total_cost_function(solution, params) % params结构体包含所有成本参数和输入数据 selected_nodes = find(solution); % 各成本分量计算 fc1 = calculate_FC1(selected_nodes, params.node_opening_cost); fc2 = calculate_FC2(selected_nodes, params.delivery_data,... params.vehicle_capacity, params.lease_cost, params.startup_cost); fc3 = calculate_FC3(params.route_matrix, params.load_matrix,... params.distance_matrix, params.c1, params.c2); % 容量约束惩罚项 penalty = params.penalty_factor * any(params.node_demand > params.node_capacity); total_cost = fc1 + fc2 + fc3 + penalty; breakdown = [fc1, fc2, fc3, penalty]; end % 修改后的成本计算函数 function [total_cost, fc1, fc2, fc3, node_customers] = calculate_cost(... solution, dist_matrix, delivery_data, vehicle_cap, node_cap, ... operating_cost, cr1, c0_cost, c1, c2, max_dist, d_center, candidate_nodes) % 获取选中的节点索引 selected_indices = find(solution); % 如果没有选中任何节点,返回高成本 if isempty(selected_indices) total_cost = Inf; fc1 = 0; fc2 = 0; fc3 = 0; node_customers = {}; return; end % 获取选中节点的坐标 node_coords = candidate_nodes(selected_indices, :); num_nodes = numel(selected_indices); % 客户数量 (使用第一个非零维度) m = size(delivery_data, 1); % 初始化变量 node_demand = zeros(num_nodes, 1); node_customers = cell(num_nodes, 1); distance_violation = 0; % FC1: 节点开放成本 fc1 = num_nodes * operating_cost; % 计算配送中心到各节点的距离 dcenter_to_nodes = sqrt(sum((node_coords - d_center).^2, 2)); % 初始化其他成本项 fc2 = 0; fc3 = 0; % 分配客户到最近节点 for j = 1:m % 计算当前客户坐标(如果delivery_data包含坐标,否则需要调整) customer_coord = delivery_data(j, 1:2); % 假设前两列是坐标 % 计算所有节点到当前客户的距离 dist_to_customer = sqrt(sum((node_coords - customer_coord).^2, 2)); % 计算完整路径距离(配送中心->节点->客户) full_distances = dcenter_to_nodes + dist_to_customer; % 找出满足距离约束的节点 valid_nodes = full_distances <= max_dist; if any(valid_nodes) % 从满足约束的节点中选择最近的 [min_dist, idx] = min(full_distances(valid_nodes)); valid_indices = find(valid_nodes); closest_idx = valid_indices(idx); else % 如果没有满足约束的节点,选择最近的一个并记录违反量 [min_dist, closest_idx] = min(full_distances); distance_violation = distance_violation + (min_dist - max_dist); end % 累计节点需求 node_demand(closest_idx) = node_demand(closest_idx) + delivery_data(j, 3); % 假设第三列是需求量 % 记录客户分配 node_customers{closest_idx} = [node_customers{closest_idx}, j]; % 计算运输成本(往返) fc3 = fc3 + 2 * (c1 * delivery_data(j, 3) * min_dist + c2 * min_dist); end % FC2: 车辆使用成本(基于节点需求) vehicle_counts = ceil(node_demand / vehicle_cap); fc2 = sum(vehicle_counts) * (cr1 + c0_cost); % 容量约束惩罚 capacity_penalty = 1e6 * max(0, sum(node_demand) - node_cap); % 距离约束惩罚 distance_penalty = 1e4 * max(0, distance_violation); % 总成本 total_cost = fc1 + fc2 + fc3 + capacity_penalty + distance_penalty; end====== 选定节点坐标 ====== 函数或变量 'selected_indices' 无法识别。 出错 logistics_cost_model (第 104 行) for i = 1:length(selected_indices)
最新发布
06-05
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值