三道类基本一样的题(费用流);
题意: 一个无向图(or 有向图), 没一个点都必须属于一个圈, 并且只能属于一个圈, 求满足要求的最小费用。
比如:
1 2 5
2 3 5
3 1 10
3 4 12
4 1 8
4 6 11
5 4 7
5 6 9
6 5 4
there are two cycles, (1->2->3->1) and (6->5->4->6) whose length is 20 + 22 = 42
像这杨构成圈并且每个点只能属于一个圈的题, 可以转化成2 分图, 每个点只能属于一个圈, 那么出度和入度必定为1 , 那么把一个点拆开i, i`, i控制入读, i` 控制出度, 流量只能为1 。 那么对于原来途中有的边 可以 i - > j`, j - > i`;连起来构图, 然后建立超级远点s,超级汇点t,s - > i , i` - > t ; 然后求最小费用流。。这样就抱着了每个点只能属于一个圈, 因为入读 == 出度 == 1 ;这类也问题可以 做为判断性问题出。
因为出入度 都是1 所以也可以用 km 求最值。。
代码: