hdu 3488 && hdu 3435 && 1853

三道类基本一样的题(费用流);

题意: 一个无向图(or 有向图), 没一个点都必须属于一个圈, 并且只能属于一个圈, 求满足要求的最小费用。

比如:

1 2 5
2 3 5
3 1 10
3 4 12
4 1 8
4 6 11
5 4 7
5 6 9
6 5 4
there are two cycles, (1->2->3->1) and (6->5->4->6) whose length is 20 + 22 = 42

 

像这杨构成圈并且每个点只能属于一个圈的题, 可以转化成2 分图, 每个点只能属于一个圈, 那么出度和入度必定为1 , 那么把一个点拆开i, i`, i控制入读, i` 控制出度, 流量只能为1 。 那么对于原来途中有的边 可以 i - > j`, j - > i`;连起来构图, 然后建立超级远点s,超级汇点t,s - > i , i` - > t ; 然后求最小费用流。。这样就抱着了每个点只能属于一个圈, 因为入读 == 出度 == 1 ;这类也问题可以  做为判断性问题出。

因为出入度 都是1 所以也可以用 km 求最值。。

代码:

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值