Introduction to Mathematical Thinking-Problem 8

8.Prove that if the sequence { a n } n = 1 ∞ \left\{a_n\right\}_{n=1}^\infty {an}n=1 tends to limit L as n → ∞ n \rightarrow \infty n, then for any fixed number M > 0 M>0 M>0, the sequence { M a n } n = 1 ∞ \left\{M a_n\right\}_{n=1}^\infty {Man}n=1 tends to the limit M L ML ML.

Proof: Because the sequence { a n } n = 1 ∞ \left\{a_n\right\}_{n=1}^\infty {an}n=1 tends to limit L as n → ∞ n \rightarrow \infty n, for any ϵ \epsilon ϵ, we can find an m m m such that for all n ⩾ m n\geqslant m nm, we have ∣ a n − L ∣ ⩽ ϵ |a_n-L|\leqslant \epsilon anLϵ.
Multiply both sides by M M M, so we have M ∣ a n − L ∣ ⩽ M ϵ M|a_n-L|\leqslant M\epsilon ManLMϵ. By algebra, we have ∣ M a n − M L ∣ ⩽ M ϵ |Ma_n-ML|\leqslant M\epsilon ManMLMϵ, for any M ϵ M\epsilon Mϵ.Therefore, the sequence { M a n } n = 1 ∞ \left\{M a_n\right\}_{n=1}^\infty {Man}n=1 tends to the limit M L ML ML.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值