8.Prove that if the sequence { a n } n = 1 ∞ \left\{a_n\right\}_{n=1}^\infty {an}n=1∞ tends to limit L as n → ∞ n \rightarrow \infty n→∞, then for any fixed number M > 0 M>0 M>0, the sequence { M a n } n = 1 ∞ \left\{M a_n\right\}_{n=1}^\infty {Man}n=1∞ tends to the limit M L ML ML.
Proof: Because the sequence
{
a
n
}
n
=
1
∞
\left\{a_n\right\}_{n=1}^\infty
{an}n=1∞ tends to limit L as
n
→
∞
n \rightarrow \infty
n→∞, for any
ϵ
\epsilon
ϵ, we can find an
m
m
m such that for all
n
⩾
m
n\geqslant m
n⩾m, we have
∣
a
n
−
L
∣
⩽
ϵ
|a_n-L|\leqslant \epsilon
∣an−L∣⩽ϵ.
Multiply both sides by
M
M
M, so we have
M
∣
a
n
−
L
∣
⩽
M
ϵ
M|a_n-L|\leqslant M\epsilon
M∣an−L∣⩽Mϵ. By algebra, we have
∣
M
a
n
−
M
L
∣
⩽
M
ϵ
|Ma_n-ML|\leqslant M\epsilon
∣Man−ML∣⩽Mϵ, for any
M
ϵ
M\epsilon
Mϵ.Therefore, the sequence
{
M
a
n
}
n
=
1
∞
\left\{M a_n\right\}_{n=1}^\infty
{Man}n=1∞ tends to the limit
M
L
ML
ML.