自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 Introduction to Mathematical Thinking-Problem 10

10.Give an example of a family of intervals AnA_nAn​, n=1,2,...n=1,2,...n=1,2,..., such that An+1⊂AnA_{n+1}\subset A_nAn+1​⊂An​ for all n and ∪n=1∞An\displaystyle \cup_{n=1}^\infty A_n∪n=1∞​An​ consis...

2020-02-02 15:00:21 144

原创 Introduction to Mathematical Thinking-Problem 9

9.Give an example of a family of intervals AnA_nAn​ such that An+1⊂AnA_{n+1}\subset A_nAn+1​⊂An​ for all nnn and ⋂n=1∞An=∅\displaystyle \bigcap_{n=1}^\infty A_n=\emptysetn=1⋂∞​An​=∅.Proof: Set An=(0,...

2020-02-02 14:41:36 192

原创 Introduction to Mathematical Thinking-Problem 8

8.Prove that if the sequence {an}n=1∞\left\{a_n\right\}_{n=1}^\infty{an​}n=1∞​ tends to limit L as n→∞n \rightarrow \inftyn→∞, then for any fixed number M>0M>0M>0, the sequence {Man}n=1∞\left...

2020-02-02 14:28:42 251

原创 Introduction to Mathematical Thinking-Problem 7

7.Prove that for any natural number nnn, 2+22+23......+2n=2n+1−22+2^2+2^3......+2^n=2^{n+1}-22+22+23......+2n=2n+1−2.Proof: Let the left hand side of the identity be SSS. We have 2S=22+23......+2n+2n...

2020-02-02 14:25:55 138

原创 Introduction to Mathematical Thinking-Problem 6

6.Prove that the only prime triple is 3,5,7.Proof: As we have proved in problem 5, there must be a multiple of 3 in the triple n,n+2,n+4n, n+2, n+4n,n+2,n+4. Thus the element must be 3, or else it is...

2020-02-02 13:42:58 120

原创 Introduction to Mathematical Thinking-Problem 5

5.Prove that for any integer nnn, at least one of the integers n,n+2,n+4n, n+2, n+4n,n+2,n+4 is divisible by 3.Proof: By the Division Theorem, nnn can be expressed as either 3q3q3q, or 3q+13q+13q+1, ...

2020-02-02 13:31:37 238

原创 Introduction to Mathematical Thinking-Problem 4

4.Prove that every odd natural number is of one of the forms 4n+14n+14n+1 or 4n+34n+34n+3, where nnn is an integer.Proof: By the Division Theorem, we can express any natural number in the form of 4q+...

2020-02-02 13:28:53 267

原创 Introduction to Mathematical Thinking-Problem 3

3.Say whether the following is true or false and support your answer by a proof.For any integer nnn, the number n2+n+1n^2+n+1n2+n+1 is odd.Proof: n2+n+1=n(n+1)+1n^2+n+1=n(n+1)+1n2+n+1=n(n+1)+1. As n...

2020-02-02 13:27:43 150

原创 Introduction to Mathematical Thinking-Problem 2

2.Say whether the following is true or false and support your answer by a proof.The sum of any five consecutive integers is divisible by 5.Proof: Let nnn be any integer, we shall prove that the sum ...

2020-02-02 13:25:11 163

原创 Introduction to Mathematical Thinking-Problem 1

Introduction to Mathematical ThinkingProblem 1: Say whether the following is true or false and support your answer by a proof.(∃m∈N)(∃n∈N)(3m+5n=12)(\exists m \in \mathbb{N})(\exists n \in \mathbb{N...

2020-02-02 13:22:57 256

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除