文献阅读
文章平均质量分 94
yuemo3353009
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
20-Modelling of Bi-Directional Spatio-Temporal Dependence & Users’ Preferences for Missing Check-in
[15] Xi, D., Zhuang, F., Liu, Y., Gu, J., Xiong, H., & He, Q. (2019). Modelling of Bi-Directional Spatio-Temporal Dependence and Users’ Dynamic Preferences for Missing POI Check-In Identification. Proceedings of the AAAI Conference on Artificial Intel.原创 2021-04-01 16:59:59 · 322 阅读 · 0 评论 -
2019-Exploring Trajectory Prediction through Machine Learning Methods
[17] Wang, C., Ma, L., Li, R., Durrani, T. S., & Zhang, H. (2019). Exploring Trajectory Prediction through Machine Learning Methods. IEEE Access, 1–1. doi:10.1109/access.2019.2929430. 文章目录`Abstract``Index terms``1. Introduction``3. 数学背景``4. 基于LSTM的单用.原创 2021-03-31 18:39:00 · 407 阅读 · 0 评论 -
2020-MARC: a robust method for multiple-aspect trajectory classification via spacetimesemantic embed
Lucas May Petry, Camila Leite Da Silva, Andrea Esuli, Chiara Renso & Vania Bogorny (2020): MARC: a robust method for multiple-aspect trajectory classification via space, time, and semantic embeddings, International Journal of Geographical Information .原创 2021-03-30 19:35:27 · 530 阅读 · 0 评论 -
2018-Predicting future locations of moving objects with deep fuzzy-LSTM networks
[1] Mingxiao Li, Feng Lu, Hengcai Zhang & Jie Chen (2018): Predicting future locations of moving objects with deep fuzzy-LSTM networks, Transportmetrica A: Transport Science, DOI: 10.1080/23249935.2018.1552334. To link to this article: https://doi.o.原创 2021-03-29 20:16:30 · 268 阅读 · 0 评论 -
2019-Improving human mobility identification with trajectory augmentation
[1] Zhou F, Yin R, Trajcevski G, et al. Improving human mobility identification with trajectory augmentation[J]. GeoInformatica, 2019: 1-31. GeoInformatica ∈ 计算机科学3区 生词 identification 识别 粗读 文章目录`概述``Abstract``Index words``其他介绍` 概述 ????主要是轨迹分类问题 ????用到了原创 2021-03-28 19:13:15 · 367 阅读 · 0 评论 -
20-Representation Learning with Multi-level Attention for ActivityTrajectory Similarity Computation
[1] Liu A, Zhang Y, Zhang X, et al. Representation Learning with Multi-level Attention for Activity Trajectory Similarity Computation[J]. IEEE Transactions on Knowledge and Data Engineering, 2020. 文章目录`Abstract``Index Terms``1 Introduction``2 Preliminari.原创 2021-03-27 20:36:37 · 724 阅读 · 0 评论 -
2020-ASRM: A Semantic and Attention Spatio-temporal Recurrent Model for Next Location Prediction
[1] Zhang X, Li B, Song C, et al. SASRM: A Semantic and Attention Spatio-temporal Recurrent Model for Next Location Prediction[C]//2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020: 1-8. 文章目录`Abstract``关键词``1 Introduction``2 Rela.原创 2021-03-25 19:38:06 · 515 阅读 · 0 评论 -
2019-Augmented Intention Model for Next-Location Prediction from Graphical Trajectory Context
[1] Jin C, Lin Z, Wu M. Augmented Intention Model for Next-Location Prediction from Graphical Trajectory Context[J]. Wireless Communications and Mobile Computing, 2019. 【augment】[ɔːɡˈment] 增加;增大 文章目录`Abstract``1 Introduction``2 预备知识``3 Augment Intent Ne.原创 2021-03-24 19:24:12 · 366 阅读 · 0 评论 -
2018-GCNs for human activity purpose imputation from gps_based trajectory data
[1] Martin H, Bucher D, Suel E, et al. Graph convolutional neural networks for human activity purpose imputation from gps-based trajectory data[J]. 2018. 文章目录`摘要``1 Introduction and Related Work``2 Data and Methods``2.1 Data``2.2 Methods` 摘要 Automatic l.原创 2021-03-23 21:31:20 · 274 阅读 · 0 评论 -
2018-Spatio-temporal check-in time prediction with recurrent neural network based survival analysis
[1] Yang G, Cai Y, Reddy C K. Spatio-temporal check-in time prediction with recurrent neural network based survival analysis[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. 2018. 文章目录`摘要``1 Introduction``3.翻译 2021-03-22 20:56:36 · 354 阅读 · 0 评论 -
[文献阅读]2020-A BiLSTM-CNN model for predicting users’ next locations based on geotagged social media
[1] Bao Y, Huang Z, Li L, et al. A BiLSTM-CNN model for predicting users’ next locations based on geotagged social media[J]. International Journal of Geographical Information Science, 2020: 1-22. 文章目录`摘要``关键词``方法``3.1 模型整体框架``3.2 Clustering using HiSpati.翻译 2021-03-07 11:28:27 · 919 阅读 · 4 评论 -
[文献阅读]2020-Learning Social Relations and Spatiotemporal Trajectories for Next Check-in Inference
[1] Liang W, Zhang W. Learning Social Relations and Spatiotemporal Trajectories for Next Check-in Inference[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020. 文章目录`摘要``关键字``II 相关工作``A.Next Check-in Inference``B.Point Process 和 注意力机制``C..翻译 2021-03-06 16:41:47 · 344 阅读 · 0 评论
分享