1.打开文件夹
2.导入数据
3.处理数据
4.定义神经网络:
y
x
w
b
激活函数
loss
准确率
训练停止条件
5.训练神经网络:
定义:
batch_size
train_steps
test_steps
开始训练
6.其他杂记:
(1)
出现这个错误是提醒要更新tensorflow的版本了,anaconda里base(root)—not installed-tensorlow-gpu—apply即可
。。。但是好像我更新了还是抱这个警告,先不管了放在这
(2)直接运行第四个框的时候会报一个“loss未定义”的错,这时候把第三个框再运行一下就解决了
(3)话不多说,最终部分代码和结果如下:
Python 3
File
Edit
View
Insert
Cell
Kernel
Widgets
Help
./…/…/cifar-10-batches-py
1
import tensorflow as tf
2
import os
3
import pickle
4
import numpy as np
5
6
CIFAR_DIR = “F:\lijingwen\Muke\muke\cifar-10-batches-py”
7
print(os.listdir(CIFAR_DIR))
[‘batches.meta’, ‘data_batch_1’, ‘data_batch_2’, ‘data_batch_3’, ‘data_batch_4’, ‘data_batch_5’, ‘readme.html’, ‘test_batch’]
1
def load_data(filename):
2
“”“read data from data file.”""
3
with open(filename, ‘rb’) as f:
4
data = pickle.load(f, encoding=‘bytes’)
5
return data[b’data’], data[b’labels’]
6
7
tensorflow.Dataset.
8
class CifarData:
9
def init(self, filenames, need_shuffle):
10
all_data = []
11
all_labels = []
12
for filename in filenames:
13
data, labels = load_data(filename)
14
for item, label in zip(data, labels):
15
if label in [0, 1]:
16
all_data.append(item)
17
all_labels.append(label)
18
self._data = np.vstack(all_data)
19
self._data = self._data / 127.5 - 1
20
self._labels = np.hstack(all_labels)
21
print(self._data.shape)
22
print(self._labels.shape)
23
24
self._num_examples = self._data.shape[0]
25
self._need_shuffle = need_shuffle
26
self._indicator = 0
27
if self._need_shuffle:
28
self._shuffle_data()
29
30
def _shuffle_data(self):
31
# [0,1,2,3,4,5] -> [5,3,2,4,0,1]
32
p = np.random.permutation(self._num_examples)
33
self._data = self._data[p]
34
self._labels = self._labels[p]
35
36
def next_batch(self, batch_size):
37
“”“return batch_size examples as a batch.”""
38
end_indicator = self._indicator + batch_size
39
if end_indicator > self._num_examples:
40
if self._need_shuffle:
41
self._shuffle_data()
42
self._indicator = 0
43
end_indicator = batch_size
44
else:
45
raise Exception(“have no more examples”)
46
if end_indicator > self._num_examples:
47
raise Exception(“batch size is larger than all examples”)
48
batch_data = self._data[self._indicator: end_indicator]
49
batch_labels = self._labels[self._indicator: end_indicator]
50
self.indicator = end_indicator
51
return batch_data, batch_labels
52
53
train_filenames = [os.path.join(CIFAR_DIR, 'data_batch%d’ % i) for i in range(1, 6)]
54
test_filenames = [os.path.join(CIFAR_DIR, ‘test_batch’)]
55
56
train_data = CifarData(train_filenames, True)
57
test_data = CifarData(test_filenames, False)
(10000, 3072)
(10000,)
(2000, 3072)
(2000,)
1
x = tf.placeholder(tf.float32, [None, 3072])
2
[None]
3
y = tf.placeholder(tf.int64, [None])
4
5
(3072, 1)
6
w = tf.get_variable(‘w’, [x.get_shape()[-1], 1],
7
initializer=tf.random_normal_initializer(0, 1))
8
(1, )
9
b = tf.get_variable(‘b’, [1],
10
initializer=tf.constant_initializer(0.0))
11
12
[None, 3072] * [3072, 1] = [None, 1]
13
y_ = tf.matmul(x, w) + b
14
15
[None, 1]
16
p_y_1 = tf.nn.sigmoid(y_)
17
[None, 1]
18
y_reshaped = tf.reshape(y, (-1, 1))
19
y_reshaped_float = tf.cast(y_reshaped, tf.float32)
20
loss = tf.reduce_mean(tf.square(y_reshaped_float - p_y_1))
21
22
bool
23
predict = p_y_1 > 0.5
24
[1,0,1,1,1,0,0,0]
25
correct_prediction = tf.equal(tf.cast(predict, tf.int64), y_reshaped)
26
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))
27
28
with tf.name_scope(‘train_op’):
29
train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)
WARNING:tensorflow:From F:\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
1
init = tf.global_variables_initializer()
2
batch_size = 20
3
train_steps = 100000
4
test_steps = 100
5
6
with tf.Session() as sess:
7
sess.run(init)
8
for i in range(train_steps):
9
batch_data, batch_labels = train_data.next_batch(batch_size)
10
loss_val, acc_val, _ = sess.run(
11
[loss, accuracy, train_op],
12
feed_dict={
13
x: batch_data,
14
y: batch_labels})
15
if (i+1) % 500 == 0:
16
print(’[Train] Step: %d, loss: %4.5f, acc: %4.5f’ % (i+1, loss_val, acc_val))
17
if (i+1) % 5000 == 0:
18
test_data = CifarData(test_filenames, False)
19
all_test_acc_val = []
20
for j in range(test_steps):
21
test_batch_data, test_batch_labels
22
= test_data.next_batch(batch_size)
23
test_acc_val = sess.run(
24
[accuracy],
25
feed_dict = {
26
x: test_batch_data,
27
y: test_batch_labels
28
})
29
all_test_acc_val.append(test_acc_val)
30
test_acc = np.mean(all_test_acc_val)
31
print(’[Test ] Step: %d, acc: %4.5f’ % (i+1, test_acc))
32
33
34
[Train] Step: 500, loss: 0.33741, acc: 0.65000
[Train] Step: 1000, loss: 0.29905, acc: 0.70000
[Train] Step: 1500, loss: 0.15000, acc: 0.85000
[Train] Step: 2000, loss: 0.10277, acc: 0.90000
[Train] Step: 2500, loss: 0.10000, acc: 0.90000
[Train] Step: 3000, loss: 0.19999, acc: 0.80000
[Train] Step: 3500, loss: 0.09566, acc: 0.90000
[Train] Step: 4000, loss: 0.31656, acc: 0.65000
[Train] Step: 4500, loss: 0.24712, acc: 0.75000
[Train] Step: 5000, loss: 0.26500, acc: 0.70000
(2000, 3072)
(2000,)
[Test ] Step: 5000, acc: 0.80150
[Train] Step: 5500, loss: 0.20336, acc: 0.80000
[Train] Step: 6000, loss: 0.05478, acc: 0.95000
[Train] Step: 6500, loss: 0.12125, acc: 0.85000
[Train] Step: 7000, loss: 0.24541, acc: 0.75000
[Train] Step: 7500, loss: 0.25299, acc: 0.75000
[Train] Step: 8000, loss: 0.10263, acc: 0.90000
[Train] Step: 8500, loss: 0.25992, acc: 0.70000
[Train] Step: 9000, loss: 0.10083, acc: 0.90000
[Train] Step: 9500, loss: 0.10000, acc: 0.90000
[Train] Step: 10000, loss: 0.26703, acc: 0.70000
(2000, 3072)
(2000,)
[Test ] Step: 10000, acc: 0.81400
[Train] Step: 10500, loss: 0.10108, acc: 0.90000
[Train] Step: 11000, loss: 0.24926, acc: 0.75000
[Train] Step: 11500, loss: 0.27655, acc: 0.65000
[Train] Step: 12000, loss: 0.22258, acc: 0.75000
[Train] Step: 12500, loss: 0.05000, acc: 0.95000
[Train] Step: 13000, loss: 0.10006, acc: 0.90000
[Train] Step: 13500, loss: 0.14959, acc: 0.85000
[Train] Step: 14000, loss: 0.32116, acc: 0.65000
[Train] Step: 14500, loss: 0.08510, acc: 0.90000
[Train] Step: 15000, loss: 0.25159, acc: 0.75000
(2000, 3072)
(2000,)
[Test ] Step: 15000, acc: 0.81800
[Train] Step: 15500, loss: 0.05233, acc: 0.95000
[Train] Step: 16000, loss: 0.17504, acc: 0.80000
[Train] Step: 16500, loss: 0.10001, acc: 0.90000
[Train] Step: 17000, loss: 0.14993, acc: 0.85000
[Train] Step: 17500, loss: 0.19063, acc: 0.80000
[Train] Step: 18000, loss: 0.10990, acc: 0.90000
[Train] Step: 18500, loss: 0.00076, acc: 1.00000
[Train] Step: 19000, loss: 0.17156, acc: 0.80000
[Train] Step: 19500, loss: 0.20010, acc: 0.80000
[Train] Step: 20000, loss: 0.30069, acc: 0.70000
(2000, 3072)
(2000,)
[Test ] Step: 20000, acc: 0.81600
[Train] Step: 20500, loss: 0.15001, acc: 0.85000
[Train] Step: 21000, loss: 0.10002, acc: 0.90000
[Train] Step: 21500, loss: 0.15820, acc: 0.85000
[Train] Step: 22000, loss: 0.05046, acc: 0.95000
[Train] Step: 22500, loss: 0.10248, acc: 0.90000
[Train] Step: 23000, loss: 0.05405, acc: 0.95000
[Train] Step: 23500, loss: 0.30000, acc: 0.70000
[Train] Step: 24000, loss: 0.24984, acc: 0.75000
[Train] Step: 24500, loss: 0.10027, acc: 0.90000
[Train] Step: 25000, loss: 0.00546, acc: 1.00000
(2000, 3072)
(2000,)
[Test ] Step: 25000, acc: 0.81900
[Train] Step: 25500, loss: 0.15296, acc: 0.85000
[Train] Step: 26000, loss: 0.10159, acc: 0.90000
[Train] Step: 26500, loss: 0.20073, acc: 0.80000
[Train] Step: 27000, loss: 0.18369, acc: 0.80000
[Train] Step: 27500, loss: 0.21014, acc: 0.80000
[Train] Step: 28000, loss: 0.30000, acc: 0.70000
[Train] Step: 28500, loss: 0.09921, acc: 0.90000
[Train] Step: 29000, loss: 0.10718, acc: 0.90000
[Train] Step: 29500, loss: 0.20979, acc: 0.80000
[Train] Step: 30000, loss: 0.34932, acc: 0.65000
(2000, 3072)
(2000,)
[Test ] Step: 30000, acc: 0.82100
[Train] Step: 30500, loss: 0.25288, acc: 0.75000
[Train] Step: 31000, loss: 0.12723, acc: 0.85000
[Train] Step: 31500, loss: 0.15197, acc: 0.85000
[Train] Step: 32000, loss: 0.10018, acc: 0.90000
[Train] Step: 32500, loss: 0.20464, acc: 0.75000
[Train] Step: 33000, loss: 0.10629, acc: 0.90000
[Train] Step: 33500, loss: 0.25627, acc: 0.75000
[Train] Step: 34000, loss: 0.29362, acc: 0.70000
[Train] Step: 34500, loss: 0.15014, acc: 0.85000
[Train] Step: 35000, loss: 0.00004, acc: 1.00000
(2000, 3072)
(2000,)
[Test ] Step: 35000, acc: 0.81900
[Train] Step: 35500, loss: 0.24982, acc: 0.75000
[Train] Step: 36000, loss: 0.20046, acc: 0.80000
[Train] Step: 36500, loss: 0.15197, acc: 0.85000
[Train] Step: 37000, loss: 0.05000, acc: 0.95000
[Train] Step: 37500, loss: 0.20000, acc: 0.80000
[Train] Step: 38000, loss: 0.12759, acc: 0.85000
[Train] Step: 38500, loss: 0.25005, acc: 0.75000
[Train] Step: 39000, loss: 0.05000, acc: 0.95000
[Train] Step: 39500, loss: 0.05000, acc: 0.95000
[Train] Step: 40000, loss: 0.19657, acc: 0.80000
(2000, 3072)
(2000,)
[Test ] Step: 40000, acc: 0.82000
[Train] Step: 40500, loss: 0.10003, acc: 0.90000
[Train] Step: 41000, loss: 0.20007, acc: 0.80000
[Train] Step: 41500, loss: 0.25698, acc: 0.75000
[Train] Step: 42000, loss: 0.15053, acc: 0.85000
[Train] Step: 42500, loss: 0.25112, acc: 0.75000
[Train] Step: 43000, loss: 0.20570, acc: 0.80000
[Train] Step: 43500, loss: 0.17739, acc: 0.80000
[Train] Step: 44000, loss: 0.15514, acc: 0.85000
[Train] Step: 44500, loss: 0.05007, acc: 0.95000
[Train] Step: 45000, loss: 0.14999, acc: 0.85000
(2000, 3072)
(2000,)
[Test ] Step: 45000, acc: 0.82150
[Train] Step: 45500, loss: 0.20068, acc: 0.80000
[Train] Step: 46000, loss: 0.10000, acc: 0.90000
[Train] Step: 46500, loss: 0.10761, acc: 0.90000
[Train] Step: 47000, loss: 0.15000, acc: 0.85000
[Train] Step: 47500, loss: 0.20128, acc: 0.80000
[Train] Step: 48000, loss: 0.15010, acc: 0.85000
[Train] Step: 48500, loss: 0.10000, acc: 0.90000
[Train] Step: 49000, loss: 0.14994, acc: 0.85000
[Train] Step: 49500, loss: 0.10000, acc: 0.90000
[Train] Step: 50000, loss: 0.20641, acc: 0.80000
(2000, 3072)
(2000,)
[Test ] Step: 50000, acc: 0.81600
[Train] Step: 50500, loss: 0.15067, acc: 0.85000
[Train] Step: 51000, loss: 0.29985, acc: 0.70000
[Train] Step: 51500, loss: 0.09935, acc: 0.90000
[Train] Step: 52000, loss: 0.19986, acc: 0.80000
[Train] Step: 52500, loss: 0.10071, acc: 0.90000
[Train] Step: 53000, loss: 0.10000, acc: 0.90000
[Train] Step: 53500, loss: 0.10568, acc: 0.90000
[Train] Step: 54000, loss: 0.15523, acc: 0.85000
[Train] Step: 54500, loss: 0.20090, acc: 0.80000
[Train] Step: 55000, loss: 0.15253, acc: 0.85000
(2000, 3072)
(2000,)
[Test ] Step: 55000, acc: 0.82000
[Train] Step: 55500, loss: 0.27071, acc: 0.70000
[Train] Step: 56000, loss: 0.24246, acc: 0.75000
[Train] Step: 56500, loss: 0.05011, acc: 0.95000
[Train] Step: 57000, loss: 0.18971, acc: 0.80000
[Train] Step: 57500, loss: 0.05087, acc: 0.95000
[Train] Step: 58000, loss: 0.22394, acc: 0.80000
[Train] Step: 58500, loss: 0.24600, acc: 0.75000
[Train] Step: 59000, loss: 0.14219, acc: 0.85000
[Train] Step: 59500, loss: 0.19999, acc: 0.80000
[Train] Step: 60000, loss: 0.20027, acc: 0.80000
(2000, 3072)
(2000,)
[Test ] Step: 60000, acc: 0.81700
[Train] Step: 60500, loss: 0.10153, acc: 0.90000
[Train] Step: 61000, loss: 0.20000, acc: 0.80000
[Train] Step: 61500, loss: 0.09850, acc: 0.90000
[Train] Step: 62000, loss: 0.19987, acc: 0.80000
[Train] Step: 62500, loss: 0.09999, acc: 0.90000
[Train] Step: 63000, loss: 0.05012, acc: 0.95000
[Train] Step: 63500, loss: 0.10001, acc: 0.90000
[Train] Step: 64000, loss: 0.05155, acc: 0.95000
[Train] Step: 64500, loss: 0.05357, acc: 0.95000
[Train] Step: 65000, loss: 0.05748, acc: 0.95000
(2000, 3072)
(2000,)
[Test ] Step: 65000, acc: 0.81800
[Train] Step: 65500, loss: 0.10019, acc: 0.90000
[Train] Step: 66000, loss: 0.06018, acc: 0.95000
[Train] Step: 66500, loss: 0.19917, acc: 0.80000
[Train] Step: 67000, loss: 0.30000, acc: 0.70000
[Train] Step: 67500, loss: 0.20122, acc: 0.80000
[Train] Step: 68000, loss: 0.15687, acc: 0.85000
[Train] Step: 68500, loss: 0.14914, acc: 0.85000
[Train] Step: 69000, loss: 0.00008, acc: 1.00000
[Train] Step: 69500, loss: 0.15009, acc: 0.85000
[Train] Step: 70000, loss: 0.15000, acc: 0.85000
(2000, 3072)
(2000,)
[Test ] Step: 70000, acc: 0.81900
[Train] Step: 70500, loss: 0.20019, acc: 0.80000
[Train] Step: 71000, loss: 0.10350, acc: 0.90000
[Train] Step: 71500, loss: 0.10000, acc: 0.90000
[Train] Step: 72000, loss: 0.16096, acc: 0.85000
[Train] Step: 72500, loss: 0.16597, acc: 0.85000
[Train] Step: 73000, loss: 0.14999, acc: 0.85000
[Train] Step: 73500, loss: 0.10000, acc: 0.90000
[Train] Step: 74000, loss: 0.10053, acc: 0.90000
[Train] Step: 74500, loss: 0.10057, acc: 0.90000
[Train] Step: 75000, loss: 0.19972, acc: 0.80000
(2000, 3072)
(2000,)
[Test ] Step: 75000, acc: 0.81900
[Train] Step: 75500, loss: 0.05002, acc: 0.95000
[Train] Step: 76000, loss: 0.05000, acc: 0.95000
[Train] Step: 76500, loss: 0.15290, acc: 0.85000
[Train] Step: 77000, loss: 0.10020, acc: 0.90000
[Train] Step: 77500, loss: 0.20000, acc: 0.80000
[Train] Step: 78000, loss: 0.19840, acc: 0.80000
[Train] Step: 78500, loss: 0.24995, acc: 0.75000
[Train] Step: 79000, loss: 0.20000, acc: 0.80000
[Train] Step: 79500, loss: 0.00000, acc: 1.00000
[Train] Step: 80000, loss: 0.05130, acc: 0.95000
(2000, 3072)
(2000,)
[Test ] Step: 80000, acc: 0.81850
[Train] Step: 80500, loss: 0.20014, acc: 0.80000
[Train] Step: 81000, loss: 0.25691, acc: 0.75000
[Train] Step: 81500, loss: 0.10194, acc: 0.90000
[Train] Step: 82000, loss: 0.15047, acc: 0.85000
[Train] Step: 82500, loss: 0.25760, acc: 0.75000
[Train] Step: 83000, loss: 0.20254, acc: 0.80000
[Train] Step: 83500, loss: 0.10000, acc: 0.90000
[Train] Step: 84000, loss: 0.20021, acc: 0.80000
[Train] Step: 84500, loss: 0.25000, acc: 0.75000
[Train] Step: 85000, loss: 0.19997, acc: 0.80000
(2000, 3072)
(2000,)
[Test ] Step: 85000, acc: 0.81950
[Train] Step: 85500, loss: 0.15016, acc: 0.85000
[Train] Step: 86000, loss: 0.35113, acc: 0.65000
[Train] Step: 86500, loss: 0.20030, acc: 0.80000
[Train] Step: 87000, loss: 0.15027, acc: 0.85000
[Train] Step: 87500, loss: 0.15078, acc: 0.85000
[Train] Step: 88000, loss: 0.10000, acc: 0.90000
[Train] Step: 88500, loss: 0.05000, acc: 0.95000
[Train] Step: 89000, loss: 0.20001, acc: 0.80000
[Train] Step: 89500, loss: 0.10005, acc: 0.90000
[Train] Step: 90000, loss: 0.10808, acc: 0.90000
(2000, 3072)
(2000,)
[Test ] Step: 90000, acc: 0.82200
[Train] Step: 90500, loss: 0.20000, acc: 0.80000
[Train] Step: 91000, loss: 0.20201, acc: 0.80000
[Train] Step: 91500, loss: 0.10000, acc: 0.90000
[Train] Step: 92000, loss: 0.05425, acc: 0.95000
[Train] Step: 92500, loss: 0.20619, acc: 0.80000
[Train] Step: 93000, loss: 0.09443, acc: 0.90000
[Train] Step: 93500, loss: 0.10001, acc: 0.90000
[Train] Step: 94000, loss: 0.19999, acc: 0.80000
[Train] Step: 94500, loss: 0.20418, acc: 0.80000
[Train] Step: 95000, loss: 0.27056, acc: 0.70000
(2000, 3072)
(2000,)
[Test ] Step: 95000, acc: 0.81800
[Train] Step: 95500, loss: 0.20252, acc: 0.80000
[Train] Step: 96000, loss: 0.19851, acc: 0.80000
[Train] Step: 96500, loss: 0.20412, acc: 0.80000
[Train] Step: 97000, loss: 0.10000, acc: 0.90000
[Train] Step: 97500, loss: 0.15101, acc: 0.85000
[Train] Step: 98000, loss: 0.00317, acc: 1.00000
[Train] Step: 98500, loss: 0.10255, acc: 0.90000
[Train] Step: 99000, loss: 0.15000, acc: 0.85000
[Train] Step: 99500, loss: 0.15000, acc: 0.85000
[Train] Step: 100000, loss: 0.15025, acc: 0.85000
(2000, 3072)
(2000,)
[Test ] Step: 100000, acc: 0.81850
1