HDOJ 题目5496 Beauty of Sequence(数学)

探讨了一种特殊序列的美丽定义,并通过算法解决了寻找所有可能子序列之和的问题。输入包括多个测试案例,每组案例由整数序列组成,需输出所有子序列和模10^9+7的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Beauty of Sequence

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 363    Accepted Submission(s): 161


Problem Description
Sequence is beautiful and the beauty of an integer sequence is defined as follows: removes all but the first element from every consecutive group of equivalent elements of the sequence (i.e. unique function in C++ STL) and the summation of rest integers is the beauty of the sequence.

Now you are given a sequence A of n integers {a1,a2,...,an} . You need find the summation of the beauty of all the sub-sequence of A . As the answer may be very large, print it modulo 109+7 .

Note: In mathematics, a sub-sequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements. For example {1,3,2} is a sub-sequence of {1,4,3,5,2,1} .
 

Input
There are multiple test cases. The first line of input contains an integer T , indicating the number of test cases. For each test case:

The first line contains an integer n (1n105) , indicating the size of the sequence. The following line contains n integers a1,a2,...,an , denoting the sequence (1ai109) .

The sum of values n for all the test cases does not exceed 2000000 .
 

Output
For each test case, print the answer modulo 109+7 in a single line.
 

Sample Input
  
3 5 1 2 3 4 5 4 1 2 1 3 5 3 3 2 1 2
 

Sample Output
  
240 54 144
 

Source
 

Recommend
hujie   |   We have carefully selected several similar problems for you:   5498  5497  5496  5495  5494 

 

题目大意:所有子序列的和

150135052015-10-05 00:15:09Accepted54961700MS2816K782 BC++弱渣在努力T^T

ac代码

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<map>
#define LL __int64
#define mod 1000000007
using namespace std;
LL same[100010];
LL qpow(LL a,int b)
{
	LL ans=1;
	while(b)
	{
		if(b&1)
			ans=(ans*a)%mod;
		a=(a*a)%mod;
		b>>=1;
	}
	return ans;
}
int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		int n;
		scanf("%d",&n);
		int i;
		map<LL,int>mp;
		LL ans=0;
		for(i=1;i<=n;i++)
		{
			LL x;
			scanf("%I64d",&x);
			if(mp.count(x)==0)
			{
				same[i]=0;
				ans=(ans+qpow(2,n-1)*x%mod)%mod;
			}
			else
			{
				ans=(ans+(((qpow(2,i-1)-same[mp[x]])*qpow(2,n-i))%mod*x)%mod)%mod;
				same[i]=same[mp[x]];
			}
			same[i]=(same[i]+qpow(2,i-1))%mod;
			mp[x]=i;
		}
		printf("%I64d\n",(ans+mod)%mod);
	}
}


内容概要:《中文大模型基准测评2025年上半年报告》由SuperCLUE团队发布,详细评估了2025年上半年中文大模型的发展状况。报告涵盖了大模型的关键进展、国内外大模型全景图及差距、专项测评基准介绍等。通过SuperCLUE基准,对45个国内外代表性大模型进行了六大任务(数学推理、科学推理、代码生成、智能体Agent、精确指令遵循、幻觉控制)的综合测评。结果显示,海外模型如o3、o4-mini(high)在推理任务上表现突出,而国内模型如Doubao-Seed-1.6-thinking-250715在智能体Agent和幻觉控制任务上表现出色。此外,报告还分析了模型性价比、效能区间分布,并对代表性模型如Doubao-Seed-1.6-thinking-250715、DeepSeek-R1-0528、GLM-4.5等进行了详细介绍。整体来看,国内大模型在特定任务上已接近国际顶尖水平,但在综合推理能力上仍有提升空间。 适用人群:对大模型技术感兴趣的科研人员、工程师、产品经理及投资者。 使用场景及目标:①了解2025年上半年中文大模型的发展现状与趋势;②评估国内外大模型在不同任务上的表现差异;③为技术选型和性能优化提供参考依据。 其他说明:报告提供了详细的测评方法、评分标准及结果分析,确保评估的科学性和公正性。此外,SuperCLUE团队还发布了多个专项测评基准,涵盖多模态、文本、推理等多个领域,为业界提供全面的测评服务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值