HDOJ题目1081 To The Max(动态规划)

本文介绍了一个关于寻找二维数组中最大子矩阵和的问题,并提供了一段AC代码实现。该问题要求从给定的整数矩阵中找到具有最大和的连续子矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



To The Max

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8370    Accepted Submission(s): 4064


Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

is in the lower left corner:

9 2
-4 1
-1 8

and has a sum of 15.
 

Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
 

Output
Output the sum of the maximal sub-rectangle.
 

Sample Input
  
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
 

Sample Output
  
15
 

Source
 

Recommend
We have carefully selected several similar problems for you:   1024  1025  1080  1078  1074 
 

ac代码

#include<stdio.h>
#include<string.h>
#define max(a,b) (a>b?a:b)
//#define INF 0xfffffff
int map[1010][1010];
int main()
{
	int n;
	while(scanf("%d",&n)!=EOF)
	{
		int i,j,k,ans=-1e9;
		memset(map,0,sizeof(map));
		for(i=1;i<=n;i++)
		{
			for(j=1;j<=n;j++)
			{
				int x;
				scanf("%d",&x);
				map[i][j]=map[i][j-1]+x;
			}
		}
		for(i=1;i<=n;i++)
		{
			//int temp=-1;
			for(j=1;j<=i;j++)
			{
				int temp=-1;
				for(k=1;k<=n;k++)
				{
					temp=max(temp,0)+map[k][i]-map[k][j-1];
					ans=max(ans,temp);
				}
			}
		}
		printf("%d\n",ans);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值