Rightmost Digit
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 32251 Accepted Submission(s): 12400
Problem Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2 3 4
Sample Output
7 6HintIn the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.
Author
Ignatius.L
Recommend
这题必然不可能完全算出N^N后取最后一位,无论是storage和time开销都无法承受。网上看到有同学用的二分法,大概是用二分法计算次幂吧,也超时了。解法在两个方面做出了大量优化:
1. 注意到求的是个位,两个数乘积的个位只和这两个数的个位有关,于是可以完全抛弃个位之前的所有数字。
2. 对于N次幂,如果不加简化,仍然非常大。考虑到N个N相乘,各位数字肯定会有一个循环产生,尝试了下果然如此,详见下表:
N | 1 | 2 | 3 | 4 | 5 | ... |
0 | 0 | 0 | 0 | 0 | 0 | ... |
1 | 1 | 1 | 1 | 1 | 0 | ... |
2 | 2 | 4 | 8 | 6 | 2 | ... |
3 | 3 | 9 | 7 | 1 | 3 | ... |
4 | 4 | 6 | 4 | 6 | 4 | ... |
5 | 5 | 5 | 5 | 5 | 5 | ... |
6 | 6 | 6 | 6 | 6 | 6 | ... |
7 | 7 | 9 | 3 | 1 | 7 | ... |
8 | 8 | 4 | 2 | 6 | 8 | ... |
9 | 9 | 1 | 9 | 1 | 9 | ... |
可见0-9十个数字的公共循环周期是4,于是整个问题被简化为“求一位数的4次以内幂”,运算量大大减少。
ac代码
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
int main()
{
int n;int s,a,b,num;
scanf("%d",&n);
while(n--)
{
scanf("%d",&num);
a=num%10;
b=num%4;
if(b==0)
b=4;
printf("%d\n",(int)pow((double)a,b)%10);
}
}