1021. Deepest Root (25)

本文介绍了一种算法,用于在给定的无环连通图中找到能够生成最高树的根节点,即所谓的最深根节点。通过深度优先搜索(DFS)遍历每个节点作为根节点时树的高度,并处理图可能不连通的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目要求:

A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes' numbers.

Output Specification:

For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components in the graph.

Sample Input 1:
5
1 2
1 3
1 4
2 5
Sample Output 1:
3
4
5
Sample Input 2:
5
1 3
1 4
2 5
3 4
Sample Output 2:
Error: 2 components
分析:
这一题考虑的是图的连通性和最大深度搜索生成树。连通性可以用并查集验证,不过并查集我一时半会没想起来,又看着这个图是非带权图,所以就有DFS去求其连通分支了。最深生成树的话当然是用DFS来生成了,每次对不同结点进行深度搜索并且生成深度生成树,比较深度得到最深的那个或那几个。
不过要注意的是如果使用的是邻接矩阵来存储图的话,这样会有一个case通不过并且报错内存溢出,这是因为矩阵的阶数到达10000了之后,那么就需要10K×10K×4B = 400MB的空间来存储N-1条路径,这明显是不可行的。所以要用动态链表来存储路径。

代码如下:
#include <stdio.h>
#include <stdlib.h>

typedef struct link_list
{
	int value;
	struct link_list *next;
}ll;

int max_deep,count,n;
ll path[10001];
int droot[10001],visit[10001];

void init(int *v);
int dfs(int root,int deep);

int main(int argc,char* argv[])
{
	int i,j,x,y,components;
	ll *list,*last;

	//freopen("input","r",stdin);
	scanf("%d",&n);

	//init path link list
	for(i=1;i<=n;i++)
	{
		path[i].value = i;
		path[i].next = NULL;
	}

	//scanf path matrix
	for(i=0;i<n-1;i++)
	{
		scanf("%d%d",&x,&y);
		list = (ll *)malloc(sizeof(ll));
		list->value = y;
		list->next = NULL;
		last = &path[x];
		while(last->next != NULL)
			last = last->next;
		last->next = list;
		
		list = (ll *)malloc(sizeof(ll));
		list->value = x;
		list->next = NULL;
		last = &path[y];
		while(last->next != NULL)
			last = last->next;
		last->next = list;
	}

	//dfs from each node
	for(i=1;i<=n;i++)
	{
		max_deep = count = 0;
		init(visit);
		visit[i] = 1;
		count += 1;
		dfs(i,0);
		if(count < n)
			break;
		droot[i] = max_deep;
	}

	//not connected
	if(count < n)
	{
		init(visit);
		components = 0;
		for(i=1;i<=n;i++)
		{
			if(!visit[i])
			{
				components += 1;
				dfs(i,0);
			}
		}
		printf("Error: %d components\n",components);
		return 0;
	}

	//print the deepest root
	max_deep = 0;
	for(i=1;i<=n;i++)
	{
		if(max_deep < droot[i])
			max_deep = droot[i];
	}

	for(i=1;i<=n;i++)
	{
		if(droot[i] == max_deep)
			printf("%d\n",i);
	}

	return 0;
}

void init(int *v)
{
	int i;
	for(i=1;i<=n;i++)
		visit[i] = 0;
}

int dfs(int root,int deep)
{
	int i,value;
	ll *node = &path[root];
	int this_deep = deep;

	if(node->next == NULL)
		return 0;

	while(node->next != NULL)
	{
		value = node->next->value;
		if(!visit[value])
		{
			visit[value] = 1;
			count += 1;
			this_deep += 1;
			if(max_deep < this_deep)
				max_deep = this_deep;
			dfs(value,this_deep);
			this_deep -= 1;
			node = node->next;
		}
		else
			node = node->next;
	}

	return 0;
}





# -*- coding: utf-8 -*- '''请在Begin-End之间补充代码, 完成BinaryTree类''' class BinaryTree: # 创建左右子树为空的根结点 def __init__(self, rootObj): self.key = rootObj # 成员key保存根结点数据项 self.leftChild = None # 成员leftChild初始化为空 self.rightChild = None # 成员rightChild初始化为空 # 把newNode插入到根的左子树 def insertLeft(self, newNode): if self.leftChild is None: self.leftChild = BinaryTree(newNode) # 左子树指向由newNode所生成的BinaryTree else: t = BinaryTree(newNode) # 创建一个BinaryTree类型的新结点t t.leftChild = self.leftChild # 新结点的左子树指向原来根的左子树 self.leftChild = t # 根结点的左子树指向结点t # 把newNode插入到根的右子树 def insertRight(self, newNode): if self.rightChild is None: # 右子树指向由newNode所生成的BinaryTree # ********** Begin ********** # self.rightChild = BinaryTree(newNode) # ********** End ********** # else: t = BinaryTree(newNode) t.rightChild = self.rightChild self.rightChild = t # ********** End ********** # # 取得右子树,返回值是一个BinaryTree类型的对象 def getRightChild(self): # ********** Begin ********** # return self.rightChild # ********** End ********** # # 取得左子树 def getLeftChild(self): # ********** Begin ********** # return self.leftChild # ********** End ********** # # 设置根结点的值 def setRootVal(self, obj): # 将根结点的值赋值为obj # ********** Begin ********** # self.key = obj # ********** End ********** # # 取得根结点的值 def getRootVal(self): # ********** Begin ********** # return self.key # ********** End ********** # # 主程序 input_str = input() nodes = input_str.split(',') # 创建根节点 root = BinaryTree(nodes[0]) # 插入左子树和右子树 if len(nodes) > 1: root.insertLeft(nodes[1]) if len(nodes) > 2: root.insertRight(nodes[2]) # 前三行输出:对创建的二叉树按编号顺序输出结点 print(root.getRootVal()) left_child = root.getLeftChild
最新发布
03-18
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值