《动手学深度学习》task3

1.过拟合、欠拟合及其解决方案

模型训练中经常出现的两类典型问题:
1.模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting)
2.模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。 在实践中,我们要尽可能同时应对欠拟合和过拟合。虽然有很多因素可能导致这两种拟合问题,我们重点讨论两个因素:模型复杂度和训练数据集大小

给定训练数据集,模型复杂度和误差之间的关系:


1.关于torch.cat()的用法
cat是concatnate的意思:拼接,联系在一起。
cat的普通用法就是将两个tensor连接在一起

C = torch.cat( (A,B),0 )  #按维数0拼接(竖着拼)

C = torch.cat( (A,B),1 )  #按维数1拼接(横着拼
>>> import torch
>>> A=torch.ones(2,3)    #2x3的张量(矩阵)                                     
>>> A
tensor([[ 1.,  1.,  1.],
        [ 1.,  1.,  1.]])
>>> B=2*torch.ones(4,3)  #4x3的张量(矩阵)                                    
>>> B
tensor([[ 2.,  2.,  2.],
        [ 2.,  2.,  2.],
        [ 2.,  2.,  2.],
        [ 2.,  2.,  2.]])
>>> C=torch.cat((A,B),0)  #按维数0(行)拼接
>>> C
tensor([[ 1.,  1.,  1.],
         [ 1.,  1.,  1.],
         [ 2.,  2.,  2.],
         [ 2.,  2.,  2.],
         [ 2.,  2.,  2.],
         [ 2.,  2.,  2.]])
>>> C.size()
torch.Size([6, 3])
>>> D=2*torch.ones(2,4) #2x4的张量(矩阵)
>>> C=torch.cat((A,D),1)#按维数1(列)拼接
>>> C
tensor([[ 1.,  1.,  1.,  2.,  2.,  2.,  2.],
        [ 1.,  1.,  1.,  2.,  2.,  2.,  2.]])
>>> C.size()
torch.Size([2, 7])

另外,cat还可以将list连接起来。

2.设置数据集的方式 参考官方文档

dataset = torch.utils.data.TensorDataset(train_features, train_labels)      # 设置数据集
    train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True) # 设置获取数据方式


3.关于FlattenLayer()的作用
相当于做了一个扁平化 view(,-1)

2.梯度消失、梯度爆炸


3.循环神经网络进阶

关于GRU与LSTM 的理解
参考网址:人人都能看懂LSTM
人人都能看懂的GRU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值