本文对比了传统RAG与Agentic RAG两种技术范式。传统RAG采用线性"检索-生成"流程,结构简单高效但处理复杂查询能力有限。而Agentic RAG引入"智能体"概念,具备循环迭代、自我评估和工具使用能力,能处理多跳查询和复杂推理,减少"幻觉"现象。虽然实现更复杂,但Agentic RAG代表了RAG技术发展的必然趋势,将LLM提升为能自主思考、规划的智能体,构建更强大的知识型AI系统。
1 、传统 RAG
线性、简洁与效率的“检索-生成”流程
传统 RAG 结构:简洁与效率

让我们首先回顾一下传统的 RAG 结构。如图所示,传统 RAG 的核心在于其线性、高效的“检索-生成”流程。
传统 RAG 的工作流程:
-
知识库编码与索引(步骤 1 & 2):
额外文档(Additional documents)首先通过嵌入模型(Embedding model)进行编码(Encode),将其内容转化为高维向量。这些向量随后被索引(Index)并存储到向量数据库(Vector database)中。这个过程通常是离线完成的,为后续的检索做好准备。
-
查询编码(步骤 3):
当用户输入一个查询(Query)时,这个查询也会通过相同的嵌入模型进行编码(Encode),生成其对应的查询向量。
-
相似性搜索(步骤 4 & 5):
查询向量被用来在向量数据库中进行相似性搜索(Similarity search),以找到与查询语义最接近的相似文档(Similar documents)。
-
提示构建与生成(步骤 6 & 7):
检索到的相似文档作为上下文(Context),与原始查询一起,被整合为一个提示(Prompt)。
这个提示被发送给大型语言模型(LLM)。
LLM 基于提供的上下文和查询生成最终的响应(Response)。
传统 RAG 的特点:
- 优点: 结构简单、流程清晰、易于实现,在处理直接、单跳的问答任务时效率高。
- 局限性: 线性流程使其在处理复杂、模糊或需要多步推理的查询时显得力不从心。它缺乏自我评估和主动规划的能力,容易受到检索结果质量的直接影响,可能导致“幻觉”或不准确的回答。
2 、Agentic RAG
智能体驱动的未来:循环、决策和工具使用的特性

相较于传统 RAG 的线性流程,Agentic RAG 引入了“智能体”(Agent)的概念,赋予 LLM 更高的自主性和决策能力。如图所示,Agentic RAG 的核心在于其循环、决策和工具使用的特性。
Agentic RAG 的工作流程:
-
智能体主导的查询处理(步骤 1-3):
查询重写与思考: 初始查询不再直接进入检索,而是首先由 LLM 智能体(LLM Agent)进行重写,将其转化为更精确的查询。随后,智能体进行自我评估,判断是否需要更多信息。这是智能体主动思考的体现。
-
主动规划与工具选择(步骤 4-6):
如果智能体判断需要更多信息,它会进一步思考“哪一个源头能帮我?”,并主动选择并调用不同的工具(Tools & APIs)。这些工具不再局限于向量数据库,还可以包括互联网搜索、结构化数据库或其他自定义 API。这种工具使用能力是 Agentic RAG 的重要特征。
-
检索与生成(步骤 7-9):
检索与上下文构建(步骤 7): 系统会利用智能体选择的工具进行检索,并得到相关的检索到的上下文(Retrieved context)。这个上下文会与更新后的查询一起,为生成答案做准备。
生成初步响应(步骤 8 & 9): 系统将
检索到的上下文和更新后的查询打包成一个提示(Prompt),发送给一个大型语言模型(LLM)。LLM 基于这个提示生成一个初步响应(Response)。 -
循环迭代与自我评估(步骤 10-12):
自我评估: 拿到初步响应后,LLM 智能体不会直接返回答案,而是会进行自我评估:“这个答案相关吗?”。
反馈循环: 如果智能体判断答案不相关,它可以循环回到初始查询或之前的步骤,重新规划、重新检索,直到找到满意的答案。这种反馈循环和自我修正能力是 Agentic RAG 解决复杂问题的关键。
Agentic RAG 的特点:
- 优点:
- 更强的推理能力: 能够处理多跳查询和复杂逻辑推理。
- 更高的准确性: 通过自我评估和迭代,减少“幻觉”和不准确的回答。
- 更强的适应性: 能够根据任务需求,灵活选择和使用不同的外部工具。
- 更好的可解释性: 智能体的“思考”过程(如查询重写、工具选择)可以被记录和追踪。
- 局限性:
- 更高的复杂性: 引入了更多的决策和循环,系统设计和调试难度增加。
- 潜在的延迟: 多次迭代和工具调用可能导致更高的响应延迟。
3、 汇总分析
传统 RAG 和 Agentic RAG 之间的主要区别
下表总结了传统 RAG 和 Agentic RAG 之间的主要区别:
| 特性 | 传统 RAG | Agentic RAG |
|---|---|---|
| LLM 角色 | 被动的内容消费者,执行检索和生成 | 主动思考、规划、决策和执行的“智能体” |
| 流程 | 线性、单向 | 循环、迭代、包含决策点 |
| 工具使用 | 主要依赖向量数据库进行检索 | 可灵活选择和调用多种外部工具(向量数据库、互联网、API 等) |
| 复杂查询 | 难以处理多跳、模糊或需推理的查询 | 擅长处理复杂、多跳和需要多步推理的查询 |
| 自我评估 | 无 | 有(如判断是否需要更多细节、答案是否相关) |
| 错误处理 | 容易将检索错误传递给生成环节 | 可通过反馈循环进行自我修正 |
| 实现难度 | 相对简单 | 相对复杂 |
总结
传统 RAG 为我们打开了 LLM 与外部知识结合的大门,它在许多场景下依然高效且实用。然而,随着 AI 应用的日益复杂,Agentic RAG 代表了 RAG 技术发展的必然趋势。它将 LLM 从一个简单的“生成器”提升为能够自主思考、规划和执行的“智能体”,从而构建出更强大、更可靠、更接近人类智能的知识型 AI 系统。理解并掌握 Agentic RAG 的核心思想,将是构建未来高阶 AI 应用的关键。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线科技企业深耕十二载,见证过太多因技术卡位而跃迁的案例。那些率先拥抱 AI 的同事,早已在效率与薪资上形成代际优势,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑。我们整理出这套 AI 大模型突围资料包:
- ✅ 从零到一的 AI 学习路径图
- ✅ 大模型调优实战手册(附医疗/金融等大厂真实案例)
- ✅ 百度/阿里专家闭门录播课
- ✅ 大模型当下最新行业报告
- ✅ 真实大厂面试真题
- ✅ 2025 最新岗位需求图谱
所有资料 ⚡️ ,朋友们如果有需要 《AI大模型入门+进阶学习资源包》,下方扫码获取~

① 全套AI大模型应用开发视频教程
(包含提示工程、RAG、LangChain、Agent、模型微调与部署、DeepSeek等技术点)

② 大模型系统化学习路线
作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!

③ 大模型学习书籍&文档
学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。

④ AI大模型最新行业报告
2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

⑤ 大模型项目实战&配套源码
学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。

⑥ 大模型大厂面试真题
面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

以上资料如何领取?

为什么大家都在学大模型?
最近科技巨头英特尔宣布裁员2万人,传统岗位不断缩减,但AI相关技术岗疯狂扩招,有3-5年经验,大厂薪资就能给到50K*20薪!

不出1年,“有AI项目经验”将成为投递简历的门槛。
风口之下,与其像“温水煮青蛙”一样坐等被行业淘汰,不如先人一步,掌握AI大模型原理+应用技术+项目实操经验,“顺风”翻盘!


这些资料真的有用吗?
这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。
资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。


以上全套大模型资料如何领取?


被折叠的 条评论
为什么被折叠?



