Container With Most Water
Given n non-negative integers a1, a2, …, an, where each represents a point at coordinate <i, ai>. n vertical lines are drawn such that the two endpoints of line i is at <i, ai> and <i, 0>. Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container.
解题思路
根据题意,需要求出 max(|i - j| * min(ai, aj))。
思路一:穷举法,时间复杂度为O(n2)。
class Solution {
public:
int maxArea(vector<int> &height) {
int ret = 0;
int len = height.size();
for(int i = 0; i < len; i++)
{
for(int j = i+1; j < len; j++)
{
ret = max(ret, (j-i)*min(height[i],height[j]));
}
}
return ret;
}
};
思路二:使用两个指针 left = 0 和 right = n - 1 分别指向数组的头和尾。重复如下步骤直到 left >= right:首先计算(right - left) * min(aleft, arigth),并更新结果;然后如果 a[left] < a[right], 则left++,否则right–。
这是一个贪心的策略,每次取两边围栏最矮的一个推进,希望获取更多的水。时间复杂度为O(n)。
class Solution {
public:
int maxArea(vector<int>& height) {
int ret = 0;
int left = 0;
int right = height.size() - 1;
while (left < right) {
ret = max(ret, (right - left) * min(height[left], height[right]));
if (height[left] < height[right]) {
++left;
}
else {
--right;
}
}
return ret;
}
};
本文介绍了一种利用双指针优化算法解决“容器最大容量”问题的方法,通过不断移动指针来减少时间复杂度,从O(n^2)优化到O(n),详细解释了算法逻辑和实现过程。
237

被折叠的 条评论
为什么被折叠?



