POJ 3274 Gold Balanced Lineup

本文探讨了一种算法,用于解决 Farmer John 的牛群中寻找最大连续平衡子集的问题。该问题要求找到一个最大的牛群子集,在这个子集中每种特征出现的次数相同。通过巧妙的数据结构和算法设计,文章提出了一种有效的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Gold Balanced Lineup
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 9652 Accepted: 2881

Description

Farmer John's N cows (1 ≤ N ≤ 100,000) share many similarities. In fact, FJ has been able to narrow down the list of features shared by his cows to a list of only K different features (1 ≤ K ≤ 30). For example, cows exhibiting feature #1 might have spots, cows exhibiting feature #2 might prefer C to Pascal, and so on.

FJ has even devised a concise way to describe each cow in terms of its "feature ID", a single K-bit integer whose binary representation tells us the set of features exhibited by the cow. As an example, suppose a cow has feature ID = 13. Since 13 written in binary is 1101, this means our cow exhibits features 1, 3, and 4 (reading right to left), but not feature 2. More generally, we find a 1 in the 2^(i-1) place if a cow exhibits feature i.

Always the sensitive fellow, FJ lined up cows 1..N in a long row and noticed that certain ranges of cows are somewhat "balanced" in terms of the features the exhibit. A contiguous range of cows i..j is balanced if each of the K possible features is exhibited by the same number of cows in the range. FJ is curious as to the size of the largest balanced range of cows. See if you can determine it.

Input

Line 1: Two space-separated integers, N and K.
Lines 2.. N+1: Line i+1 contains a single K-bit integer specifying the features present in cow i. The least-significant bit of this integer is 1 if the cow exhibits feature #1, and the most-significant bit is 1 if the cow exhibits feature # K.

Output

Line 1: A single integer giving the size of the largest contiguous balanced group of cows.

Sample Input

7 3
7
6
7
2
1
4
2

Sample Output

4

Hint

In the range from cow #3 to cow #6 (of size 4), each feature appears in exactly 2 cows in this range

Source

[Submit] [Go Back] [Status] [Discuss

 

做完这道题我叹服他的思路,推荐大家看的博客:http://blog.youkuaiyun.com/hqd_acm/article/details/5902792

我有点晕,本以为我写的这题会超时,结果却没有超时,我是在输入的过程中,就所有的数都放在哈希表中,最后统一进行处理,本来以为会超时的结果却发现没有超时。

#include <stdio.h>
#include <string.h>
int sum[100010][31];
int c[100010][31];
struct link
{
    int val[31],next,pos;
}a[1000000];
int b[1000004],statck[1000000];
int maxlen=1000003;
int maxres,INF=0x7fffffff;
int main()
{
    int i,j,n,m,x,s,top,s1,s2,top2,u,v,max;
    scanf("%d %d",&n,&m);
    memset(sum,0,sizeof(sum));
    memset(b,-1,sizeof(b));
    memset(c,0,sizeof(c));
    top=0; top2=0;
    a[top].pos=0;
    for(i=1;i<=m;i++)
    {
        a[top].val[i]=0;
    }
    a[top].next=b[0]; b[0]=top; top++;
    statck[top2++]=0;
    for(i=1;i<=n;i++)
    {
        scanf("%d",&x);
        for(j=1;j<=m;j++)
        {
            sum[i][j]=sum[i-1][j]+x%2;
            c[i][j]=sum[i][j]-sum[i][1];
            x=x/2;
        }
        for(j=1,s=0;j<=m;j++)
        {
            s=(s*10%maxlen+c[i][j])%maxlen;
        }
        s=abs(s);
        if(b[s]==-1)
        {
            statck[top2++]=s;
        }
        for(j=1;j<=m;j++)
        {
            a[top].val[j]=c[i][j];
        }
        a[top].pos=i;
        a[top].next=b[s]; b[s]=top;
        top++;
    }
    max=0;
    for(i=0;i<=top2-1;i++)
    {
        s=statck[i];
        for(j=b[s];j!=-1;j=a[j].next)
        {
            if(a[j].pos!=INF)
            {
                for(u=a[j].next;u!=-1;u=a[u].next)
                {
                    for(v=1;v<=m;v++)
                    {
                        if(a[j].val[v]!=a[u].val[v])
                        {
                            break;
                        }
                    }
                    if(v==m+1)
                    {
                        if(abs(a[u].pos-a[j].pos)>max)
                        {
                            max=abs(a[u].pos-a[j].pos);
                        }
                        a[u].pos=INF;
                    }
                }
            }
        }
    }
    printf("%d\n",max);
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值