Shearlet变换作为一种优越的多尺度几何分析工具,在图像去噪领域表现出色,特别适用于处理随机噪声。下面我将详细介绍其原理和完整的MATLAB实现方案。
Shearlet变换去噪优势
与传统方法对比
| 方法 | 优点 | 缺点 |
|---|---|---|
| Shearlet变换 | 优越的边缘保持能力、多方向捕捉、最优稀疏表示 | 计算复杂度较高 |
| 小波变换 | 计算快速、理论基础完善 | 方向选择性有限、边缘保持差 |
| 傅里叶变换 | 全局频率分析 | 空间定位能力差 |
| 中值滤波 | 脉冲噪声抑制好 | 细节模糊严重 |
Shearlet变换去噪原理
核心思想
噪声图像 → Shearlet变换 → 系数阈值处理 → 逆Shearlet变换 → 去噪图像
噪声模型
- 加性高斯白噪声:
I_noisy = I_clean + η, 其中η ~ N(0, σ²) - 乘性噪声:可通过对数变换转为加性噪声
MATLAB实现
1. 主函数框架
function [denoised_img, performance] = shearlet_denoise(noisy_img, varargin)
% SHEARLET_DENOISE 基于Shearlet变换的图像去噪
% 输入:
% noisy_img - 含噪图像
% 可选参数:
% 'noise_std' - 噪声标准差估计
% 'threshold_type' - 阈值类型 ('soft', 'hard', 'bayes')
% 'scales' - 分解尺度数
% 'directional_filters' - 方向滤波器数
% 输出:
% denoised_img - 去噪图像
% performance - 性能指标
% 参数解析
p = inputParser;
addParameter(p, 'noise_std', [], @isnumeric);
addParameter(p, 'threshold_type', 'bayes', @ischar);
addParameter(p, 'scales', 4, @isnumeric);
addParameter(p, 'directional_filters', [2 3 4 4], @isnumeric);
addParameter(p, 'display_results', true, @islogical);
parse(p, varargin{:});
params = p.Results;
fprintf('开始Shearlet变换去噪处理...\n');
% 1. 图像预处理
preprocessed_img = preprocess_image(noisy_img);
% 2. 噪声估计(如果未提供)
if isempty(params.noise_std)
params.noise_std = estimate_noise_std(preprocessed_img);
end
fprintf('估计噪声标准差: %.4f\n', params.noise_std);
% 3. Shearlet变换
shearlet_coeffs = compute_shearlet_transform(preprocessed_img, params);
% 4. 系数阈值处理
denoised_coeffs = apply_threshold(shearlet_coeffs, params);
% 5. 逆Shearlet变换
denoised_img = inverse_shearlet_transform(denoised_coeffs, params);
% 6. 后处理
denoised_img = postprocess_image(denoised_img, preprocessed_img);
% 7. 性能评估
performance = evaluate_performance(preprocessed_img, denoised_img, params);
% 8. 结果可视化
if params.display_results
visualize_results(preprocessed_img, denoised_img, shearlet_coeffs, ...
denoised_coeffs, performance, params);
end
fprintf('去噪完成: PSNR=%.2fdB, SSIM=%.4f\n', ...
performance.psnr, performance.ssim);
end
2. 图像预处理
function processed_img = preprocess_image(img)
% 图像预处理
% 转换为double类型
if ~isa(img, 'double')
img = im2double(img);
end
% 如果是彩色图像,转换为灰度
if ndims(img) == 3
img = rgb2gray(img);
fprintf('转换为灰度图像处理\n');
end
% 图像尺寸调整(优化Shearlet变换性能)
[h, w] = size(img);
new_size = [2^nextpow2(h), 2^nextpow2(w)];
if any(new_size ~= [h, w])
processed_img = imresize(img, new_size);
fprintf('图像尺寸调整: %dx%d -> %dx%d\n', h, w, new_size(1), new_size(2));
else
processed_img = img;
end
end
3. 噪声估计
function noise_std = estimate_noise_std(img)
% 估计图像噪声标准差
% 方法1: 基于小波变换的噪声估计
[c, s] = wavedec2(img, 1, 'db4');
HH = detcoef2('h', c, s, 1);
% 使用HH子带的稳健估计
noise_std = median(abs(HH(:))) / 0.6745;
% 方法2: 基于均匀区域的备选估计
try
% 寻找可能的均匀区域
uniform_std = estimate_from_uniform_regions(img);
if uniform_std > 0 && abs(noise_std - uniform_std) / noise_std > 0.5
noise_std = (noise_std + uniform_std) / 2;
end
catch
% 如果备选方法失败,使用小波估计
end
fprintf('噪声标准差估计: %.4f\n', noise_std);
end
function uniform_std = estimate_from_uniform_regions(img)
% 从均匀区域估计噪声
% 计算局部方差
local_var = stdfilt(img, ones(3)).^2;
% 寻找低方差区域(可能是均匀区域)
sorted_var = sort(local_var(:));
n_lowest = round(0.1 * numel(sorted_var));
low_var_regions = sorted_var(1:n_lowest);
% 估计噪声标准差
uniform_std = sqrt(mean(low_var_regions));
end
4. Shearlet变换实现
function shearlet_coeffs = compute_shearlet_transform(img, params)
% 计算Shearlet变换系数
fprintf('计算Shearlet变换...\n');
tic;
[h, w] = size(img);
scales = params.scales;
directional_filters = params.directional_filters;
% 初始化系数结构
shearlet_coeffs = struct();
shearlet_coeffs.low_pass = zeros(h, w);
shearlet_coeffs.high_pass = cell(1, scales);
% 傅里叶域处理
img_freq = fft2(img);
% 生成Shearlet滤波器
shearlet_filters = generate_shearlet_filters(h, w, scales, directional_filters);
% 应用Shearlet变换
all_coeffs = zeros(h, w, sum(directional_filters) + 2);
coeff_idx = 1;
% 低频分量
low_pass_coeff = ifft2(img_freq .* shearlet_filters.low_pass);
shearlet_coeffs.low_pass = real(low_pass_coeff);
all_coeffs(:, :, coeff_idx) = shearlet_coeffs.low_pass;
coeff_idx = coeff_idx + 1;
% 高频分量(各尺度各方向)
for scale = 1:scales
num_directions = directional_filters(scale);
scale_coeffs = zeros(h, w, num_directions);
for direction = 1:num_directions
% 应用方向滤波器
directional_filter = shearlet_filters.high_pass{scale}(:, :, direction);
coeff = ifft2(img_freq .* directional_filter);
scale_coeffs(:, :, direction) = real(coeff);
all_coeffs(:, :, coeff_idx) = scale_coeffs(:, :, direction);
coeff_idx = coeff_idx + 1;
end
shearlet_coeffs.high_pass{scale} = scale_coeffs;
end
shearlet_coeffs.all_coeffs = all_coeffs;
shearlet_coeffs.filters = shearlet_filters;
transform_time = toc;
fprintf('Shearlet变换完成,耗时: %.2f秒\n', transform_time);
end
function filters = generate_shearlet_filters(h, w, scales, directional_filters)
% 生成Shearlet滤波器组
% 创建频率网格
[X, Y] = meshgrid(-w/2:w/2-1, -h/2:h/2-1);
X = fftshift(X) / (w/2);
Y = fftshift(Y) / (h/2);
R = sqrt(X.^2 + Y.^2); % 径向频率
Theta = atan2(Y, X); % 角度
filters = struct();
filters.low_pass = zeros(h, w);
filters.high_pass = cell(1, scales);
% 生成Meyer小波尺度函数(低频)
filters.low_pass = meyer_scale_function(R);
% 生成各尺度方向滤波器
for scale = 1:scales
num_directions = directional_filters(scale);
scale_filters = zeros(h, w, num_directions);
% 尺度相关的径向窗函数
radial_window = meyer_wavelet_function(2^(scale-1) * R);
for direction = 1:num_directions
% 方向角度
theta_k = (direction - 1) * 2 * pi / num_directions;
% 方向窗函数
angular_window = directional_meyer_function(...
num_directions * (Theta - theta_k));
% 组合得到Shearlet滤波器
shearlet_filter = radial_window .* angular_window;
% 归一化
scale_filters(:, :, direction) = shearlet_filter / norm(shearlet_filter(:));
end
filters.high_pass{scale} = scale_filters;
end
end
function phi = meyer_scale_function(r)
% Meyer尺度函数
phi = zeros(size(r));
% 支撑在 [0, 2/3]
idx1 = (r >= 0) & (r <= 2/3);
phi(idx1) = 1;
% 过渡区域 [2/3, 1]
idx2 = (r > 2/3) & (r <= 1);
v = r(idx2) - 2/3;
phi(idx2) = cos(pi/2 * meyer_aux_function(3*v - 1));
end
function psi = meyer_wavelet_function(r)
% Meyer小波函数
psi = zeros(size(r));
% 支撑在 [1/3, 4/3]
idx1 = (r >= 1/3) & (r <= 2/3);
v1 = r(idx1) - 1/3;
psi(idx1) = sin(pi/2 * meyer_aux_function(3*v1 - 1));
idx2 = (r > 2/3) & (r <= 4/3);
v2 = r(idx2) - 2/3;
psi(idx2) = cos(pi/2 * meyer_aux_function(3*v2/2 - 1));
end
function w = directional_meyer_function(theta)
% 方向Meyer函数
w = zeros(size(theta));
% 支撑在 [-1, 1]
idx = (abs(theta) <= 1);
w(idx) = cos(pi/2 * meyer_aux_function(abs(theta(idx)) - 1/2));
end
function v = meyer_aux_function(t)
% Meyer辅助函数
v = zeros(size(t));
idx = (t >= 0) & (t <= 1);
v(idx) = t(idx).^4 .* (35 - 84*t(idx) + 70*t(idx).^2 - 20*t(idx).^3);
end
5. 阈值处理核心算法
function denoised_coeffs = apply_threshold(shearlet_coeffs, params)
% 对Shearlet系数应用阈值处理
fprintf('应用%s阈值处理...\n', params.threshold_type);
denoised_coeffs = shearlet_coeffs;
noise_std = params.noise_std;
% 保留低频系数(通常包含主要图像信息)
% 主要处理高频系数
total_coeffs = 0;
thresholded_coeffs = 0;
for scale = 1:params.scales
scale_coeffs = shearlet_coeffs.high_pass{scale};
[h, w, num_directions] = size(scale_coeffs);
for direction = 1:num_directions
coeffs = scale_coeffs(:, :, direction);
% 计算尺度相关的阈值
threshold = calculate_threshold(coeffs, noise_std, scale, ...
params.threshold_type);
% 应用阈值
thresholded_coeffs = apply_single_threshold(coeffs, threshold, ...
params.threshold_type);
denoised_coeffs.high_pass{scale}(:, :, direction) = thresholded_coeffs;
total_coeffs = total_coeffs + numel(coeffs);
end
end
% 更新所有系数
denoised_coeffs.all_coeffs(:, :, 2:end) = ...
reconstruct_all_highpass_coeffs(denoised_coeffs);
fprintf('阈值处理完成\n');
end
function threshold = calculate_threshold(coeffs, noise_std, scale, threshold_type)
% 计算阈值
switch threshold_type
case 'universal'
% 通用阈值
n = numel(coeffs);
threshold = noise_std * sqrt(2 * log(n));
case 'sure'
% SURE阈值(Stein无偏风险估计)
threshold = sure_threshold(coeffs, noise_std);
case 'bayes'
% BayesShrink阈值
sigma_x = max(std(coeffs(:))^2 - noise_std^2, 0);
if sigma_x > 0
threshold = noise_std^2 / sqrt(sigma_x);
else
threshold = max(abs(coeffs(:)));
end
case 'scale_adaptive'
% 尺度自适应阈值
base_threshold = noise_std * sqrt(2 * log(numel(coeffs)));
threshold = base_threshold / (1.5^(scale-1));
otherwise
error('未知的阈值类型: %s', threshold_type);
end
end
function thresholded_coeffs = apply_single_threshold(coeffs, threshold, threshold_type)
% 应用单一阈值
switch threshold_type
case 'hard'
% 硬阈值
thresholded_coeffs = coeffs .* (abs(coeffs) > threshold);
case 'soft'
% 软阈值
signs = sign(coeffs);
thresholded_coeffs = signs .* max(abs(coeffs) - threshold, 0);
case 'bayes'
% Bayes软阈值
signs = sign(coeffs);
thresholded_coeffs = signs .* max(abs(coeffs) - threshold, 0);
otherwise
% 默认软阈值
signs = sign(coeffs);
thresholded_coeffs = signs .* max(abs(coeffs) - threshold, 0);
end
end
function sure_thresh = sure_threshold(coeffs, noise_std)
% SURE阈值计算
n = numel(coeffs);
coeffs_sorted = sort(abs(coeffs(:)));
risks = zeros(n, 1);
for i = 1:n
threshold = coeffs_sorted(i);
% SURE风险计算
num_above = sum(coeffs_sorted >= threshold);
sum_squares = sum(min(coeffs_sorted, threshold).^2);
risks(i) = (n - 2*num_above + sum_squares) / n;
end
[~, min_idx] = min(risks);
sure_thresh = coeffs_sorted(min_idx);
end
6. 逆变换与后处理
function denoised_img = inverse_shearlet_transform(denoised_coeffs, params)
% Shearlet逆变换
fprintf('执行Shearlet逆变换...\n');
tic;
[h, w] = size(denoised_coeffs.low_pass);
reconstructed_freq = zeros(h, w);
% 添加低频分量
low_pass_freq = fft2(denoised_coeffs.low_pass);
reconstructed_freq = reconstructed_freq + low_pass_freq .* ...
denoised_coeffs.filters.low_pass;
% 添加各尺度方向的高频分量
for scale = 1:params.scales
scale_coeffs = denoised_coeffs.high_pass{scale};
num_directions = size(scale_coeffs, 3);
for direction = 1:num_directions
coeff_freq = fft2(scale_coeffs(:, :, direction));
directional_filter = denoised_coeffs.filters.high_pass{scale}(:, :, direction);
reconstructed_freq = reconstructed_freq + coeff_freq .* directional_filter;
end
end
% 逆傅里叶变换
denoised_img = real(ifft2(reconstructed_freq));
inverse_time = toc;
fprintf('逆变换完成,耗时: %.2f秒\n', inverse_time);
end
function final_img = postprocess_image(denoised_img, original_img)
% 图像后处理
% 裁剪到原始尺寸(如果之前调整过)
[h_orig, w_orig] = size(original_img);
[h_denoised, w_denoised] = size(denoised_img);
if h_denoised ~= h_orig || w_denoised ~= w_orig
denoised_img = imresize(denoised_img, [h_orig, w_orig]);
end
% 幅度裁剪到[0,1]
final_img = max(0, min(1, denoised_img));
% 保持与原始图像相同的动态范围
final_img = (final_img - min(final_img(:))) / ...
(max(final_img(:)) - min(final_img(:)));
end
7. 性能评估
function performance = evaluate_performance(original, denoised, params)
% 评估去噪性能
performance = struct();
% PSNR
mse = mean((original(:) - denoised(:)).^2);
performance.psnr = 10 * log10(1 / mse);
% SSIM
performance.ssim = ssim(denoised, original);
% 边缘保持指数
performance.epi = edge_preservation_index(original, denoised);
% 特征相似性
performance.fsim = feature_similarity_index(original, denoised);
% 运行时间(如果需要)
performance.noise_std_estimated = params.noise_std;
fprintf('性能指标:\n');
fprintf(' PSNR: %.2f dB\n', performance.psnr);
fprintf(' SSIM: %.4f\n', performance.ssim);
fprintf(' 边缘保持指数: %.4f\n', performance.epi);
fprintf(' 特征相似性: %.4f\n', performance.fsim);
end
function epi = edge_preservation_index(original, denoised)
% 边缘保持指数
[gx_orig, gy_orig] = gradient(original);
[gx_den, gy_den] = gradient(denoised);
grad_orig = sqrt(gx_orig.^2 + gy_orig.^2);
grad_den = sqrt(gx_den.^2 + gy_den.^2);
epi = sum(grad_orig(:) .* grad_den(:)) / ...
(sqrt(sum(grad_orig(:).^2)) * sqrt(sum(grad_den(:).^2)));
end
function fsim = feature_similarity_index(img1, img2)
% 特征相似性指数
% 使用相位一致性作为特征
pc1 = phase_congruency(img1);
pc2 = phase_congruency(img2);
C = 0.001; % 常数避免除零
fsim = (2 * pc1 .* pc2 + C) ./ (pc1.^2 + pc2.^2 + C);
fsim = mean(fsim(:));
end
8. 结果可视化
function visualize_results(original, denoised, orig_coeffs, denoised_coeffs, ...
performance, params)
% 可视化去噪结果和系数
figure('Position', [100, 100, 1400, 900]);
% 1. 原始图像和去噪图像对比
subplot(3, 4, 1);
imshow(original, []);
title('原始图像');
subplot(3, 4, 2);
imshow(denoised, []);
title(sprintf('去噪图像\nPSNR: %.2fdB, SSIM: %.4f', ...
performance.psnr, performance.ssim));
% 2. 噪声图像(模拟)
subplot(3, 4, 3);
noisy_img = original + params.noise_std * randn(size(original));
imshow(noisy_img, []);
title(sprintf('含噪图像\n噪声标准差: %.3f', params.noise_std));
% 3. 残差图像
subplot(3, 4, 4);
residual = original - denoised;
imshow(residual, []);
title('残差图像');
colorbar;
% 4. 系数分布对比(第一尺度)
subplot(3, 4, 5);
if params.scales >= 1
orig_scale_coeffs = orig_coeffs.high_pass{1}(:, :, 1);
denoised_scale_coeffs = denoised_coeffs.high_pass{1}(:, :, 1);
histogram(orig_scale_coeffs(:), 50, 'Normalization', 'pdf');
hold on;
histogram(denoised_scale_coeffs(:), 50, 'Normalization', 'pdf');
legend('原始系数', '去噪系数');
title('第一尺度系数分布');
grid on;
end
% 5. 系数能量分布
subplot(3, 4, 6);
scale_energy = zeros(params.scales, 1);
for scale = 1:params.scales
scale_coeffs = denoised_coeffs.high_pass{scale};
scale_energy(scale) = sum(scale_coeffs(:).^2);
end
bar(scale_energy);
title('各尺度系数能量');
xlabel('尺度'); ylabel('能量');
grid on;
% 6. 边缘保持可视化
subplot(3, 4, 7);
orig_edges = edge(original, 'canny');
denoised_edges = edge(denoised, 'canny');
edge_overlap = imfuse(orig_edges, denoised_edges);
imshow(edge_overlap);
title(sprintf('边缘保持\nEPI: %.4f', performance.epi));
% 7. 局部细节对比
subplot(3, 4, 8);
% 选择图像中心区域
[h, w] = size(original);
roi = original(round(h/4):round(3*h/4), round(w/4):round(3*w/4));
roi_denoised = denoised(round(h/4):round(3*h/4), round(w/4):round(3*w/4));
imshowpair(roi, roi_denoised, 'montage');
title('局部细节对比');
% 8. 频率谱分析
subplot(3, 4, 9);
orig_spectrum = abs(fftshift(fft2(original)));
denoised_spectrum = abs(fftshift(fft2(denoised)));
imagesc(log1p(orig_spectrum));
title('原始图像频谱');
colorbar;
subplot(3, 4, 10);
imagesc(log1p(denoised_spectrum));
title('去噪图像频谱');
colorbar;
% 9. 性能指标汇总
subplot(3, 4, 11);
metrics = [performance.psnr, performance.ssim * 100, ...
performance.epi * 100, performance.fsim * 100];
metric_names = {'PSNR', 'SSIM', 'EPI', 'FSIM'};
bar(metrics);
set(gca, 'XTickLabel', metric_names);
title('性能指标汇总');
ylabel('得分');
grid on;
% 10. 参数信息
subplot(3, 4, 12);
text(0.1, 0.7, sprintf('参数设置:\n尺度数: %d\n方向数: %s\n阈值类型: %s\n噪声估计: %.4f', ...
params.scales, mat2str(params.directional_filters), ...
params.threshold_type, params.noise_std), 'FontSize', 10);
text(0.1, 0.3, sprintf('处理信息:\n图像尺寸: %dx%d\n方法: Shearlet变换', ...
size(original,1), size(original,2)), 'FontSize', 10);
axis off;
end
📈 应用示例和测试
示例1:标准测试图像去噪
function demo_shearlet_denoise()
% Shearlet去噪演示
% 读取测试图像
img = im2double(imread('cameraman.tif'));
% 添加高斯噪声
noise_std = 0.1;
noisy_img = img + noise_std * randn(size(img));
% 不同阈值方法比较
methods = {'soft', 'hard', 'bayes', 'scale_adaptive'};
results = cell(length(methods), 1);
figure('Position', [50, 50, 1200, 800]);
for i = 1:length(methods)
% Shearlet去噪
[denoised, perf] = shearlet_denoise(noisy_img, ...
'noise_std', noise_std, ...
'threshold_type', methods{i}, ...
'display_results', false);
results{i} = struct('image', denoised, 'performance', perf);
% 显示结果
subplot(2, 3, i);
imshow(denoised, []);
title(sprintf('%s阈值\nPSNR: %.2fdB', methods{i}, perf.psnr));
end
% 显示原始和噪声图像
subplot(2, 3, 5);
imshow(img, []);
title('原始图像');
subplot(2, 3, 6);
imshow(noisy_img, []);
title(sprintf('噪声图像\n噪声标准差: %.3f', noise_std));
% 性能比较表格
fprintf('\n方法比较:\n');
fprintf('%-15s %-8s %-8s %-8s\n', '方法', 'PSNR', 'SSIM', 'EPI');
fprintf('%-15s %-8s %-8s %-8s\n', '------', '----', '----', '---');
for i = 1:length(methods)
p = results{i}.performance;
fprintf('%-15s %-8.2f %-8.4f %-8.4f\n', ...
methods{i}, p.psnr, p.ssim, p.epi);
end
end
示例2:不同噪声水平测试
function noise_level_analysis()
% 不同噪声水平下的性能分析
img = im2double(imread('lena.png'));
if ndims(img) == 3
img = rgb2gray(img);
end
noise_levels = [0.05, 0.1, 0.15, 0.2, 0.25];
psnr_results = zeros(length(noise_levels), 3);
ssim_results = zeros(length(noise_levels), 3);
methods = {'shearlet', 'wavelet', 'bm3d'};
for i = 1:length(noise_levels)
noise_std = noise_levels(i);
noisy_img = img + noise_std * randn(size(img));
% Shearlet方法
[denoised_shearlet, perf_shearlet] = shearlet_denoise(noisy_img, ...
'noise_std', noise_std, 'display_results', false);
% 小波方法比较
denoised_wavelet = wavelet_denoise(noisy_img, noise_std);
% BM3D方法(如果有工具箱)
try
denoised_bm3d = BM3D(noisy_img, noise_std);
catch
denoised_bm3d = denoised_wavelet; % 备选
end
% 计算性能指标
psnr_results(i, 1) = perf_shearlet.psnr;
psnr_results(i, 2) = 10 * log10(1 / mean((img(:) - denoised_wavelet(:)).^2));
psnr_results(i, 3) = 10 * log10(1 / mean((img(:) - denoised_bm3d(:)).^2));
ssim_results(i, 1) = perf_shearlet.ssim;
ssim_results(i, 2) = ssim(denoised_wavelet, img);
ssim_results(i, 3) = ssim(denoised_bm3d, img);
end
% 绘制性能曲线
figure('Position', [100, 100, 1000, 400]);
subplot(1, 2, 1);
plot(noise_levels, psnr_results, 'o-', 'LineWidth', 2);
legend('Shearlet', '小波', 'BM3D', 'Location', 'best');
xlabel('噪声标准差');
ylabel('PSNR (dB)');
title('不同噪声水平的PSNR比较');
grid on;
subplot(1, 2, 2);
plot(noise_levels, ssim_results, 's-', 'LineWidth', 2);
legend('Shearlet', '小波', 'BM3D', 'Location', 'best');
xlabel('噪声标准差');
ylabel('SSIM');
title('不同噪声水平的SSIM比较');
grid on;
end
参考代码 shearlet变换的应用 www.youwenfan.com/contentcsk/79586.html
实用技巧和注意事项
1. 参数选择指南
function optimal_params = optimize_parameters(img_type, noise_level)
% 根据图像类型和噪声水平推荐参数
optimal_params = struct();
switch img_type
case 'natural'
optimal_params.scales = 4;
optimal_params.directional_filters = [2, 3, 4, 4];
optimal_params.threshold_type = 'bayes';
case 'texture_rich'
optimal_params.scales = 5;
optimal_params.directional_filters = [3, 4, 5, 5, 5];
optimal_params.threshold_type = 'scale_adaptive';
case 'medical'
optimal_params.scales = 3;
optimal_params.directional_filters = [2, 3, 3];
optimal_params.threshold_type = 'soft';
otherwise
optimal_params.scales = 4;
optimal_params.directional_filters = [2, 3, 4, 4];
optimal_params.threshold_type = 'bayes';
end
% 根据噪声水平调整
if noise_level > 0.2
optimal_params.threshold_type = 'hard'; % 强噪声用硬阈值
end
end
2. 计算优化建议
function fast_shearlet_denoise(noisy_img, noise_std)
% 快速Shearlet去噪(牺牲一些精度换取速度)
% 使用较小的尺度数和方向数
params.scales = 3;
params.directional_filters = [2, 2, 3];
params.noise_std = noise_std;
params.threshold_type = 'universal'; % 计算更简单
params.display_results = true;
% 下采样处理(对大图像)
if min(size(noisy_img)) > 512
scale_factor = 512 / min(size(noisy_img));
small_img = imresize(noisy_img, scale_factor);
[denoised_small, perf] = shearlet_denoise(small_img, params);
% 上采样回原尺寸
denoised_img = imresize(denoised_small, size(noisy_img));
else
[denoised_img, perf] = shearlet_denoise(noisy_img, params);
end
return denoised_img, perf;
end
扩展应用
1. 彩色图像去噪
function color_denoise(rgb_img, noise_std)
% 彩色图像Shearlet去噪
% 转换到YUV色彩空间
yuv_img = rgb2ycbcr(rgb_img);
% 仅对亮度分量去噪(保持色彩信息)
Y = yuv_img(:, :, 1);
U = yuv_img(:, :, 2);
V = yuv_img(:, :, 3);
% 对Y分量进行Shearlet去噪
Y_denoised = shearlet_denoise(Y, 'noise_std', noise_std, ...
'display_results', false);
% 重组图像
yuv_denoised = cat(3, Y_denoised, U, V);
rgb_denoised = ycbcr2rgb(yuv_denoised);
return rgb_denoised;
end
2. 视频去噪框架
function video_denoise(video_path, output_path)
% 视频序列Shearlet去噪
video_reader = VideoReader(video_path);
video_writer = VideoWriter(output_path, 'MPEG-4');
open(video_writer);
frame_count = 0;
while hasFrame(video_reader)
frame = readFrame(video_reader);
frame_double = im2double(frame);
% 估计噪声(使用第一帧或连续估计)
if frame_count == 0
noise_std = estimate_noise_std(rgb2gray(frame_double));
end
% 彩色去噪
denoised_frame = color_denoise(frame_double, noise_std);
writeVideo(video_writer, denoised_frame);
frame_count = frame_count + 1;
if mod(frame_count, 30) == 0
fprintf('已处理 %d 帧\n', frame_count);
end
end
close(video_writer);
fprintf('视频去噪完成: %d 帧\n', frame_count);
end
这个完整的Shearlet变换去噪实现提供了从理论到实践的全面解决方案。你可以根据具体图像特性和噪声水平调整参数,获得最佳的去噪效果。

被折叠的 条评论
为什么被折叠?



