LeetCode-Two Sum

Given an array of integers, return indices of the two numbers such that they add up to a specific target.

You may assume that each input would have exactly one solution, and you may not use the same element twice.

Example:

Given nums = [2, 7, 11, 15], target = 9,

Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].

首先想到的是暴力求解算法,交上去竟然过了。

代码:

vector<int> twoSum(vector<int>& nums, int target) {
        int len = nums.size();
        vector<int> tmp;
        for(int i=0;i<len;i++){
            for(int j=i+1;j<len;j++){
                if(nums[i]+nums[j]==target){
                    tmp.push_back(i);
                    tmp.push_back(j);
                    return tmp;
                }
            }
        }
    }

优化一下,使用map,

代码:

   vector<int> twoSum(vector<int>& nums, int target) {
        map<int,int> tmp;
        vector<int> res;
        for(int i=0;i<nums.size();i++){
            tmp[nums[i]] = i;
        }
        for(int i=0;i<nums.size();i++){
            int s = target-nums[i];
            if(tmp.find(s)!=tmp.end()&&tmp.at(s)!=i){
                res.push_back(i);
                res.push_back(tmp[s]);
                return res;
            }
        }
}

做的过程中,还顺便学习了一下map。

https://blog.youkuaiyun.com/seanyxie/article/details/5804974

https://blog.youkuaiyun.com/u010025211/article/details/46653519

 

LeetCode 中,two-sum 问题是经典的算法问题之一。使用哈希表解法是其中一种高效且常见的实现方式。该方法的时间复杂度为 O(n),空间复杂度也为 O(n),相较于暴力双重循环的 O(n²) 方法更优。 ### 哈希表解法的核心思想 通过遍历数组,在每次迭代中计算当前元素与目标值之间的差值(即 `target - nums[i]`),然后检查该差值是否已经存在于哈希表中。如果存在,则说明找到了满足条件的两个数;如果不存在,则将当前元素及其索引存入哈希表中,以便后续查找。 ### C++ 实现代码 ```cpp class Solution { public: vector<int> twoSum(vector<int>& nums, int target) { unordered_map<int, int> hash; // 存储元素的值和下标 int n = nums.size(); for (int i = 0; i < n; ++i) { int x = target - nums[i]; // 寻找对应的另一个加数 if (hash.count(x)) return { hash[x], i }; // 如果找到,直接返回结果 else hash[nums[i]] = i; // 否则,将当前元素存入哈希表 } return { -1, -1 }; // 没有找到符合条件的两个数 } }; ``` ### C 实现代码 另一种实现方式是使用静态分配或动态分配的哈希表结构,例如使用数组模拟哈希表。这种方法在某些特定条件下可能效率更高,尤其是当输入数据范围较小且已知时。 以下是一个优化过的 C 语言实现示例: ```c int* twoSum(int* nums, int numsSize, int target, int* returnSize) { int min = INT_MAX; *returnSize = 2; int i = 0; for (i = 0; i < numsSize; i++) { if (nums[i] < min) min = nums[i]; } int max = target - min; int len = max - min + 1; // 确定哈希表长度 if (len <= 50000) { int *table = (int*)malloc(len * sizeof(int)); int *indice = (int*)malloc(2 * sizeof(int)); for (i = 0; i < len; i++) { table[i] = -1; // 初始化哈希表 } for (i = 0; i < numsSize; i++) { if (nums[i] - min < len) { if (table[target - nums[i] - min] != -1) { indice[0] = table[target - nums[i] - min]; indice[1] = i; return indice; } table[nums[i] - min] = i; } } free(table); return indice; } else { int *a = (int *)malloc(sizeof(int) * 2); for (int i = 0; i < numsSize; i++) { for (int j = 0; j < numsSize; j++) { if (i != j && nums[i] + nums[j] == target) { a[0] = i; a[1] = j; return a; } } } return NULL; } } ``` ### 关键点分析 - **时间复杂度**:O(n),因为每个元素只被处理一次。 - **空间复杂度**:O(n),用于存储哈希表。 - **适用场景**:适用于需要快速查找配对值的问题。 - **注意事项**:确保在查找过程中不会重复使用同一个元素,因此需在哈希表中保存的是之前遍历过的元素[^2]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值