习题 3.1 模仿自动机的样子来重新定义二叉树.
A deterministic finite state automata (DFA) is a 5-tuple M =(Σ,V,r,T,f)(\Sigma, \bm{V}, \bm{r}, \bm{T}, f)(Σ,V,r,T,f), where
a) Σ={l,r}\Sigma=\{\bm{l},\bm{r}\}Σ={l,r} is the alphabet;
b) V={v1,…,vn}\bm{V}=\{\bm{v}_1,\ldots,\bm{v}_n\}V={v1,…,vn} is the set of nodes;
c) r∈V\bm{r} \in \bm{V}r∈V is the start node;
d) ϕ\phiϕ is the set of terminal state;
e) f : V∪{ϕ}×Σ∗→V∪{ϕ}\bm{V}\cup\{\phi\} \times \Sigma^* \to \bm{V}\cup\{\phi\}V∪{ϕ}×Σ∗→V∪{ϕ} is the transition function.
Any s∈Σ∗s\in \Sigma^*s∈Σ∗is accepted by the automata iff ∀v∈V,∃1 s∈Σ∗ st.f(r,s)=v.\forall \bm{v}\in\bm{V},\exists1 \,s∈\Sigma^∗ \,st. f ( r , s ) = v .∀v∈V,∃1s∈Σ∗st.f(r,s)=v.
习题3.2 模仿自动机的样子来重新定义树.
A deterministic finite state automata (DFA) is a 5-tuple M =(Σ,V,r,T,f)(\Sigma, \bm{V}, \bm{r}, \bm{T}, f)(Σ,V,r,T,f), where
a) Σ=N+\Sigma=\bm{N}_+Σ=N+ is the alphabet;
b) V={v1,…,vn}\bm{V}=\{\bm{v}_1,\ldots,\bm{v}_n\}V={v1,…,vn} is the set of nodes;
c) r∈V\bm{r} \in \bm{V}r∈V is the start node;
d) ϕ\phiϕ is the set of terminal state;
e) f : V∪{ϕ}×Σ∗→V∪{ϕ}\bm{V}\cup\{\phi\} \times \Sigma^* \to \bm{V}\cup\{\phi\}V∪{ϕ}×Σ∗→V∪{ϕ} is the transition function.
Any s∈Σ∗s\in \Sigma^*s∈Σ∗is accepted by the automata iff ∀v∈V,∃1 s∈Σ∗ st.f(r,s)=v.\forall \bm{v}\in\bm{V},\exists1 \,s∈\Sigma^∗ \,st. f ( r , s ) = v .∀v∈V,∃1s∈Σ∗st.f(r,s)=v.
AAA的幂集$
A\mathbf{A}A的幂集
3168

被折叠的 条评论
为什么被折叠?



